The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells.

The Oct-3/4 transcription factor is a member of the POU family of transcription factors and, as such, probably plays a crucial role in mammalian embryogenesis and differentiation. It is expressed in the earliest stages of embryogenesis and repressed in subsequent stages. Similarly, Oct-3/4 is expressed in embryonal carcinoma (EC) cells and is repressed in retinoic acid (RA)-differentiated EC cells. Previously we have shown that the Oct-3/4 promoter harbors an RA-responsive element, RAREoct, which functions in EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for positive regulators of transcription and in RA-differentiated EC cells as a binding site for negative regulators. Our present results demonstrate that in P19 and RA-treated P19 cells, the orphan receptors ARP-1/COUP-TFII and EAR-3/COUP-TFI repress Oct-3/4 promoter activity through the RAREoct site in a dose-dependent manner. While the N-terminal region of the ARP-1/COUP-TFII receptor is dispensable for this repression, the C-terminal domain harbors the silencing region. Interestingly, three different RA receptor:retinoid X receptor (RAR:RXR) heterodimers, RAR alpha:RXR alpha, RAR beta:RXR alpha, and RAR beta:RXR beta, specifically bind and activate Oct-3/4 promoter through the RAREoct site in a ligand-dependent manner. We have shown that antagonism between ARP-1/COUP-TFII or EAR-3/COUP-TFI and the RAR:RXR heterodimers and their intracellular balance modulate Oct-3/4 expression. Oct-3/4 transcriptional repression by the orphan receptors can be overcome by increasing amounts of RAR:RXR heterodimers. Conversely, activation of Oct-3/4 promoter by RAR:RXR heterodimers was completely abolished by EAR-3/COUP-TFI and by ARP-1/COUP-TFII. The orphan receptors bind the RAREoct site with a much higher affinity than the RAR:RXR heterodimers. This high binding affinity provides ARP-1/COUP-TFII and EAR-3/COUP-TFI with the ability to compete with and even displace RAR:RXR from the RAREoct site and subsequently to actively silence the Oct-3/4 promoter. We have shown that RA treatment of EC cells results in up-regulation of ARP-1/COUP-TFII and EAR-3/COUP-TFI expression. Most interestingly, in RA-treated EC cells, the kinetics of Oct-3/4 repression inversely correlates with the kinetics of ARP-1/COUP-TFII and EAR-3/COUP-TFI activation. These findings are in accordance with the suggestion that these orphan receptors participate in controlling a network of transcription factors, among which Oct-3/4 is included, which may establish the pattern of normal gene expression during development.[1]


WikiGenes - Universities