The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Catalytic properties of mouse carbonic anhydrase V.

A cDNA encoding the mouse carbonic anhydrase V gene was isolated by reverse transcription and polymerase chain reaction from BALB/c mouse liver mRNA. Vectors containing the full coding sequence as well as two different NH2-terminal truncated genes expressed enzymatically active protein in Escherichia coli. The carbonic anhydrase V produced by a vector containing the full coding sequence, which includes a possible NH2-terminal mitochondrial targeting signal, was proteolytically processed by E. coli and contained several amino-terminal ends. The two NH2-terminal truncated vectors deleted, respectively, 1) the 29-amino acid putative targeting sequence and 2) 51 amino acids, yielding a protein equivalent to a carbonic anhydrase (CA) V isolated from mouse liver mitochondria; and both vectors produced homogeneous protein fractions. These latter two forms of CA V had identical steady-state constants for the hydration of CO2, with maximal values of kcat/Km at 3 x 10(7) M-1 s-1 and kcat at 3 x 10(5) s-1 with an apparent pKa for catalysis of 7.4 determined from kcat/Km. In catalytic properties, mouse CA V is closest to CA I; however, in inhibition by acetazolamide, ethoxzolamide, and cyanate, CA V is very similar to CA II. Mouse CA V has a tyrosine at position 64, where the highly active isozyme II has histidine serving as a proton shuttle in the catalytic pathway. Investigation of a site-specific mutant of CA V containing the replacement Tyr64-->His showed that the unique kinetic properties of CA V are not due to the presence of tyrosine at position 64.[1]

References

  1. Catalytic properties of mouse carbonic anhydrase V. Heck, R.W., Tanhauser, S.M., Manda, R., Tu, C., Laipis, P.J., Silverman, D.N. J. Biol. Chem. (1994) [Pubmed]
 
WikiGenes - Universities