The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of intestinal insulin-like peptide on glucose catabolism in mealworm larval fat body in vitro: dependence on extracellular Ca2+ for its stimulatory action.

In vitro hormonally induced variations of glucose catabolism in mealworm fat body tissue were examined by a microradiorespirometric method. An insulin-like peptide (ILP) extracted from the midgut of last larval instar mealworm larvae significantly modified glucose catabolism and was dependent on energy metabolism and on the Ca2+ concentration in the culture medium. Using two different labelled substrate molecules, the stimulatory effects of ILP (compared with those of mammalian insulin) on the relative use of the pentose cycle as opposed to the glycolytic-citric acid cycle by the mealworm fat body were measured in vitro. Metabolic variations were evaluated using either [1-14C]glucose or [6-14C]glucose as substrates. Time course and dose-response curves of ILP and the hormonally induced variations in total CO2 and 14CO2 kinetics were determined. Modification in the specific radioactivity kinetics of 14CO2 derived from [1-14C] glucose and [6-14C]glucose molecules under hormonal effects were observed. As demonstrated in in vivo studies, ILP stimulated the relative utilization of the pentose cycle. However, this effect was observed much more rapidly, but for a shorter time, with fat body in vitro. Mammalian insulin produced similar, but not identical effects. Variations in transmembranous Ca2+ cellular exchanges, induced by either EGTA, nifedipine, or calcium ionophore ionomycin included in the culture medium, indicated that the stimulatory effects of ILP depends on this cation.[1]


WikiGenes - Universities