The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A new amino acid racemase with threonine alpha-epimerase activity from Pseudomonas putida: purification and characterization.

We have found that Pseudomonas putida ATCC 17642 cells grown in a medium containing D-threonine as the sole nitrogen source produce an enzyme that catalyzes epimerization of threonine. Proton nuclear magnetic resonance analysis of the enzyme reaction in deuterium oxide clearly showed epimerization from L- to D-allo-threonine and also from D- to L-allo-threonine. This is the first example of an enzyme that was clearly shown to epimerize threonine. The enzyme has been purified to homogeneity, which was shown by polyacrylamide gel electrophoresis. The enzyme has a molecular weight of about 82,000 and consists of two subunits identical in molecular weight (about 41,000). The enzyme contains 1 mol of pyridoxal 5'-phosphate per mol of subunit as a cofactor, and its absorption spectrum exhibits absorption maxima at 280 and 420 nm. The enzyme catalyzes not only epimerization of threonine by stereoconversion at the alpha position but also racemization of various amino acids, except acidic and aromatic amino acids. The enzyme is similar to amino acid racemase with low substrate specificity (EC in enzymological properties but is distinct from it in the action on threonine.[1]


WikiGenes - Universities