The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of endoplasmic reticular calcium in oligosaccharide processing of alpha 1-antitrypsin.

Mobilization of Ca2+ from the endoplasmic reticulum (ER) suppresses translational initiation and inhibits post-translational processing and secretion of glycoproteins. This study explores the mechanism whereby ionomycin, a Ca2+ ionophore, and thapsigargin, an ER Ca(2+)-ATPase inhibitor, promote retention of alpha 1-antitrypsin (alpha 1-AT) bearing high mannose, endoglycosidase H (Endo H)-sensitive oligosaccharide side chains within the ER of HepG2 cells. Arrest occurred at the removal of mannose residues such that intermediates with Man7-9GlcNAc2 side chains accumulated with the Man8-9GlcNAc2 structures predominating. Maturation of alpha 1-AT bearing Man5-6GlcNAc2 side chains was unaffected. Inhibition of alpha 1-AT processing by ionomycin occurred independently of translational suppression. Forms of alpha 1-AT identical to those retained with ionomycin or thapsigargin were observed upon treatment with the alpha-1,2-mannosidase inhibitor 1-deoxymannojirimycin whereas castanospermine, an inhibitor of ER alpha-glucosidase I, produced different forms of the glycoprotein. Neither inhibitor impaired transport or secretion of alpha 1-AT. With brefeldin A, which causes redistribution of Golgi enzymes to the ER, alpha 1-AT was retained intracellularly but acquired resistance to Endo H. With ionomycin, thapsigargin, or 1-deoxymannojirimycin-treated cells, however, brefeldin A failed to promote further processing of the glycoprotein. Possible mechanisms for the suppression of alpha 1-AT processing at the alpha-1,2-mannosidase step by Ca(2+)-mobilizing agents are discussed. Excepting tunicamycin, traditional inhibitors of protein processing did not affect amino acid incorporation.[1]

References

  1. Role of endoplasmic reticular calcium in oligosaccharide processing of alpha 1-antitrypsin. Kuznetsov, G., Brostrom, M.A., Brostrom, C.O. J. Biol. Chem. (1993) [Pubmed]
 
WikiGenes - Universities