The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning, sequencing, and expression of the Pseudomonas putida protocatechuate 3,4-dioxygenase genes.

The genes that encode the alpha and beta subunits of protocatechuate 3,4-dioxygenase (3,4-PCD [EC 1.13.11.3]) were cloned from a Pseudomonas putida (formerly P. aeruginosa) (ATCC 23975) genomic library prepared in lambda phage. Plaques were screened by hybridization with degenerate oligonucleotides designed using known amino acid sequences. A 1.5-kb SmaI fragment from a 15-kb primary clone was subcloned, sequenced, and shown to contain two successive open reading frames, designated pcaH and pcaG, corresponding to the beta and alpha subunits, respectively, of 3,4-PCD. The amino acid sequences deduced from pcaHG matched the chemically determined sequence of 3,4-PCD in all except three positions. Cloning of pcaHG into broad-host-range expression vector pKMY319 allowed high levels of expression in P. putida strains, as well as in Proteus mirabilis after specific induction of the plasmid-encoded nahG promoter with salicylate. The recombinant enzyme was purified and crystallized from P. mirabilis, which lacks an endogenous 3,4-PCD. The physical, spectroscopic, and kinetic properties of the recombinant enzyme were indistinguishable from those of the wild-type enzyme. Moreover, the same transient enzyme intermediates were formed during the catalytic cycle. These studies establish the methodology which will allow mechanistic investigations to be pursued through site-directed mutagenesis of P. putida 3,4-PCD, the only aromatic ring-cleaving dioxygenase for which the three-dimensional structure is known.[1]

References

  1. Cloning, sequencing, and expression of the Pseudomonas putida protocatechuate 3,4-dioxygenase genes. Frazee, R.W., Livingston, D.M., LaPorte, D.C., Lipscomb, J.D. J. Bacteriol. (1993) [Pubmed]
 
WikiGenes - Universities