The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mirabilis


High impact information on Mirabilis

  • Results of experiments in a laboratory model of a Foley catheterised bladder infected with P mirabilis showed that when retention balloons were inflated with a solution of triclosan (10 g/L), the catheters drained freely for at least 7 days [6].
  • RESULTS: In the absence of urea, the acid tolerances of wild-type H. pylori, a urease-negative H. pylori mutant, Escherichia coli, and Proteus mirabilis were similar [7].
  • During a period of 10 weeks, four patients in one hospital became infected with gentamicin-resistant Proteus mirabilis [2].
  • Two extremely eurythermal goby fishes, Gillichthys mirabilis and Gillichthys seta, which encounter habitat temperature variations of approximately 30 degrees C, showed seasonal acclimatization of endogenous levels and of onset temperatures for enhanced synthesis of a 90-kDa-class heat shock protein (HSP90) [8].
  • Tetradecapeptide somatostatin (10-80 microM) and its analog urotensin II (0.1-5 microM), a dodecapeptide from the urophysis of the teleost fish Gillichthys mirabilis, produced similar slowly developing relaxations of carbachol-induced tone [9].

Chemical compound and disease context of Mirabilis


Biological context of Mirabilis


Anatomical context of Mirabilis


Associations of Mirabilis with chemical compounds

  • In striking contrast, the addition of 5 mmol/L of urea completely protected H. pylori but not P. mirabilis or C. jejuni from pH values as low as 1 [25].
  • When cells of P. mirabilis containing NR1 are cultured in medium containing Cm at 250 microgram/ml a growth lag of 20-35 hr ensues [26].
  • Gamma-irradiation induced high levels of nitrate reductase activity (NADH:nitrate oxidoreductase, EC in callus of Haworthia mirabilis Haworth [27].
  • Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. tissues [28].
  • The degradation was blocked by the metalloproteinase inhibitors GM6001 and 1, 10-phenantroline (both of which inhibited P. aeruginosa elastase, P. mirabilis proteinase, and E. faecalis gelatinase), or the inhibitor E64 (which inhibited S. pyogenes cysteine proteinase) [29].

Gene context of Mirabilis

  • Cell invasion by P. mirabilis and mucin- and cell type-related distribution and response differences indicate bacterial tropism that affects crystal formation and mucosal presence [30].
  • To explain different clinical significance of the strains we evaluated the biological activity of the lipopolysaccharides of P. mirabilis O3 and O18, as measured by interleukin-8 (IL-8) production [31].
  • Ten clinical isolates of Proteus mirabilis were found to produce an inhibitor-resistant TEM beta-lactamase (IRT) in association with a TEM-1 enzyme [32].
  • CONCLUSION: Our results suggest that antibodies against antigenic determinants of P. mirabilis in RA and K. pneumoniae in AS have cytotoxic properties on structurally related host proteins [33].
  • Finally we have reconstituted recombination pathways of S marcescens and P mirabilis by combining the cloned recA and recBCD genes from these species in E coli deleted for recA and recBCD [34].

Analytical, diagnostic and therapeutic context of Mirabilis


  1. Rapid differentiation of bacterial meningitides by direct gas-liquid chromatography. Thadepalli, H., Gangopadhyay, P.K., Ansari, A., Overturf, G.D., Dhawan, V.K., Mandal, A.K. J. Clin. Invest. (1982) [Pubmed]
  2. Infection caused by Proteus mirabilis strains with transferrable gentamicin-resistance factors. Datta, N. Lancet (1975) [Pubmed]
  3. Mutational analysis of the Bordetella pertussis fim/fha gene cluster: identification of a gene with sequence similarities to haemolysin accessory genes involved in export of FHA. Willems, R.J., Geuijen, C., van der Heide, H.G., Renauld, G., Bertin, P., van den Akker, W.M., Locht, C., Mooi, F.R. Mol. Microbiol. (1994) [Pubmed]
  4. Post-antibiotic suppressive effect of ciprofloxacin against gram-positive and gram-negative bacteria. Chin, N.X., Neu, H.C. Am. J. Med. (1987) [Pubmed]
  5. Review of clinical experience in the United States with cefpodoxime proxetil in adults with uncomplicated urinary tract infections. Cox, C.E., Graveline, J.F., Luongo, J.M. Drugs (1991) [Pubmed]
  6. Control of encrustation and blockage of Foley catheters. Stickler, D.J., Jones, G.L., Russell, A.D. Lancet (2003) [Pubmed]
  7. The proton pump inhibitor omeprazole inhibits acid survival of Helicobacter pylori by a urease-independent mechanism. McGowan, C.C., Cover, T.L., Blaser, M.J. Gastroenterology (1994) [Pubmed]
  8. The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys). Dietz, T.J., Somero, G.N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  9. Neuropeptide-induced contraction and relaxation of the mouse anococcygeus muscle. Gibson, A., Bern, H.A., Ginsburg, M., Botting, J.H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  10. Qualitative and quantitative changes in the antibody producing cell response to lipopolysaccharide induced after incorporation of the antigen into bacterial membrane phospholipid vesicles. Ruttkowski, E., Nixdorff, K. J. Immunol. (1980) [Pubmed]
  11. Cell differentiation of Proteus mirabilis is initiated by glutamine, a specific chemoattractant for swarming cells. Allison, C., Lai, H.C., Gygi, D., Hughes, C. Mol. Microbiol. (1993) [Pubmed]
  12. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Sturgill, G., Rather, P.N. Mol. Microbiol. (2004) [Pubmed]
  13. Outer membrane permeation of beta-lactam antibiotics in Escherichia coli, Proteus mirabilis, and Enterobacter cloacae. Sawai, T., Hiruma, R., Kawana, N., Kaneko, M., Taniyasu, F., Inami, A. Antimicrob. Agents Chemother. (1982) [Pubmed]
  14. Australian evaluation of Autobac I with suggested interpretive and technical modifications. Funnell, G.R., Guinness, M.D. Antimicrob. Agents Chemother. (1979) [Pubmed]
  15. In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract. Zhao, H., Li, X., Johnson, D.E., Blomfield, I., Mobley, H.L. Mol. Microbiol. (1997) [Pubmed]
  16. Activation of transcription at divergent urea-dependent promoters by the urease gene regulator UreR. D'Orazio, S.E., Thomas, V., Collins, C.M. Mol. Microbiol. (1996) [Pubmed]
  17. Proteus mirabilis urease: histidine 320 of UreC is essential for urea hydrolysis and nickel ion binding within the native enzyme. Sriwanthana, B., Mobley, H.L. Infect. Immun. (1993) [Pubmed]
  18. Proteus mirabilis urease: use of a ureA-lacZ fusion demonstrates that induction is highly specific for urea. Nicholson, E.B., Concaugh, E.A., Mobley, H.L. Infect. Immun. (1991) [Pubmed]
  19. Nucleotide sequence of the bla(RTG-2) (CARB-5) gene and phylogeny of a new group of carbenicillinases. Choury, D., Szajnert, M.F., Joly-Guillou, M.L., Azibi, K., Delpech, M., Paul, G. Antimicrob. Agents Chemother. (2000) [Pubmed]
  20. Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Kunin, C.M., Hua, T.H., Bakaletz, L.O. Infect. Immun. (1995) [Pubmed]
  21. Role of cell surface receptors in the regulation of intracellular killing of bacteria by murine peritoneal exudate neutrophils. Hart, P.H., Spencer, L.K., Nikoloutsopoulos, A., Lopez, A.F., Vadas, M.A., McDonald, P.J., Finlay-Jones, J.J. Infect. Immun. (1986) [Pubmed]
  22. Concentrations of ceftriaxone (1,000 milligrams intravenously) in abdominal tissues during open prostatectomy. Martin, C., Viviand, X., Cottin, A., Savelli, V., Brousse, C., Ragni, E., Richaud, C., Mallet, M.N. Antimicrob. Agents Chemother. (1996) [Pubmed]
  23. Lipopolysaccharide from Proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins. Gwoździński, K., Pieniazek, A., Kaca, W. Int. J. Biochem. Cell Biol. (2003) [Pubmed]
  24. Generation of hydrogen peroxide during the oxidation of L-phenylalanine by Proteus mirabilis isolated membranes. Sauret-Ignazi, G., Laboure-Rossat, A.M., Jouve, H.M., Pelmont, J. Biochimie (1982) [Pubmed]
  25. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Marshall, B.J., Barrett, L.J., Prakash, C., McCallum, R.W., Guerrant, R.L. Gastroenterology (1990) [Pubmed]
  26. Selective amplification of genes on the R plasmid, NR1, in Proteus mirabilis: an example of the induction of selective gene amplification. Perlman, D., Stickgold, R. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  27. Gamma-irradiation activates biochemical systems: induction of nitrate reductase activity in plant callus. Pandey, K.N., Sabharwal, P.S. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  28. Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. tissues. Bolognesi, A., Polito, L., Lubelli, C., Barbieri, L., Parente, A., Stirpe, F. J. Biol. Chem. (2002) [Pubmed]
  29. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Schmidtchen, A., Frick, I.M., Andersson, E., Tapper, H., Björck, L. Mol. Microbiol. (2002) [Pubmed]
  30. Pathological and therapeutic significance of cellular invasion by Proteus mirabilis in an enterocystoplasty infection stone model. Mathoera, R.B., Kok, D.J., Verduin, C.M., Nijman, R.J. Infect. Immun. (2002) [Pubmed]
  31. Interleukin-8 response in cells from the human urinary tract induced by lipopolysaccharides of Proteus mirabilis O3 and O18. Chromek, M., Stankowska, D., Dadfar, E., Kaca, W., Rabbani, H., Brauner, A. J. Urol. (2005) [Pubmed]
  32. Characterization of an inhibitor-resistant enzyme IRT-2 derived from TEM-2 beta-lactamase produced by Proteus mirabilis strains. Bret, L., Chanal, C., Sirot, D., Labia, R., Sirot, J. J. Antimicrob. Chemother. (1996) [Pubmed]
  33. Cytotoxicity responses to peptide antigens in rheumatoid arthritis and ankylosing spondylitis. Wilson, C., Rashid, T., Tiwana, H., Beyan, H., Hughes, L., Bansal, S., Ebringer, A., Binder, A. J. Rheumatol. (2003) [Pubmed]
  34. The recA-recBCD dependent recombination pathways of Serratia marcescens and Proteus mirabilis in Escherichia coli: functions of hybrid enzymes and hybrid pathways. Rinken, R., de Vries, J., Weichenhan, D., Wackernagel, W. Biochimie (1991) [Pubmed]
  35. Identification of MrpI as the sole recombinase that regulates the phase variation of MR/P fimbria, a bladder colonization factor of uropathogenic Proteus mirabilis. Li, X., Lockatell, C.V., Johnson, D.E., Mobley, H.L. Mol. Microbiol. (2002) [Pubmed]
  36. Crystallization of recA protein from Proteus mirabilis. Weber, I.T., Steitz, T.A. J. Mol. Biol. (1986) [Pubmed]
  37. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Bahrani, F.K., Johnson, D.E., Robbins, D., Mobley, H.L. Infect. Immun. (1991) [Pubmed]
  38. UK31214, a new aminoglycoside and derivative of kanamycin B. Wise, R., Andrews, J.M., Bedford, K.A. Antimicrob. Agents Chemother. (1980) [Pubmed]
  39. Factors influencing the immune enhancement of intrapulmonary bactericidal mechanisms. Jakab, G.J. Infect. Immun. (1976) [Pubmed]
WikiGenes - Universities