The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene.

The nucleotide sequence of a 6.8-kb chromosomal subfragment of plasmid pHW100 complementing an Escherichia coli modC ( chlD) mutant has been determined. This DNA region encodes the genes of a high-affinity uptake system for molybdate arranged in an operon with the genes modABCD. Since the modA product has a signal peptide at the N-terminus it probably is the periplasmic binding-protein for molybdate. The products of modB (chlJ) and modC ( chlD) have been described earlier as the inner membrane protein and the ATP-binding protein of the molybdate transport system, respectively. At present, there is no information on possible functions of the fourth gene of the operon, modD. Upstream of the mod operon, two other gene loci, termed modR and an open reading frame ORF6 could be identified. ModR shares homology with a molybdenum-pterin binding protein of Clostridium pasteurianum. ORF6 has extensive homology to ModC and other nucleotide-binding proteins of E. coli. Insertional inactivation of modR and ORF6 using a gentamicin resistance gene cartridge has no effect on molybdoenzyme activities, indicating that none of the two gene products is essential for molybdate uptake or molybdenum cofactor synthesis. However, by using a plasmid carrying a modA-lacZ gene fusion we observed that inactivation of modR releases repression of the mod operon independent of the molybdate concentration in the medium. This indicates that modR is a component of the mod operon regulation or the repressor itself.[1]

References

  1. Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Walkenhorst, H.M., Hemschemeier, S.K., Eichenlaub, R. Microbiol. Res. (1995) [Pubmed]
 
WikiGenes - Universities