Complexity of the erythroid transcription factor NF- E2 as revealed by gene targeting of the mouse p18 NF-E2 locus.
High-level globin expression in erythroid precursor cells depends on the integrity of NF-E2 recognition sites, transcription factor AP-1-like protein-binding motifs, located in the upstream regulatory regions of the alpha- and beta-globin loci. The NF-E2 transcription factor, which recognizes these sites, is a heterodimer consisting of (i) p45 NF- E2 (the larger subunit), a hematopoietic-restricted basic leucine zipper protein, and (ii) a widely expressed basic leucine zipper factor, p18 NF-E2, the smaller subunit. p18 NF-E2 protein shares extensive homology with the maf protooncogene family. To determine an in vivo role for p18 NF-E2 protein we disrupted the p18 NF-E2-encoding gene by homologous recombination in murine embryonic stem cells and generated p18 NF-E2-/- mice. These mice are indistinguishable from littermates throughout all phases of development and remain healthy in adulthood. Despite the absence of expressed p18 NF-E2, DNA-binding activity with the properties of the NF-E2 heterodimer is present in fetal liver erythroid cells of p18 NF-E2-/- mice. We speculate that another member of the maf basic leucine zipper family substitutes for the p18 subunit in a complex with p45 NF- E2. Thus, p18 NF-E2 per se appears to be dispensable in vivo.[1]References
- Complexity of the erythroid transcription factor NF-E2 as revealed by gene targeting of the mouse p18 NF-E2 locus. Kotkow, K.J., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg









