The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of serotonergic 5-HT1A receptor reduces Ca(2+)- and glutamatergic receptor-evoked arachidonic acid and No/cGMP release in adult hippocampus.

Stimulation of glutamatergic NMDA receptor in adult rat hippocampal synaptoneurosomes induces statistically significant Ca(2+)-dependent liberation of arachidonic acid (AA) and nitric oxide (NO)-activated cGMP synthesis. NMDA acting for 5 min at 100 microM markedly increases, by approx. 25%, Ca(2+)-mediated AA release from phospholipids of hippocampal synaptoneurosomes. Prolonged stimulation of NMDA receptor up to 10 min has smaller stimulatory effect and enhances AA release by about 6%. Moreover, NMDA activates NO-dependent cGMP production by approx. 5 times more than the Ca2+ itself. Release of both these second messengers is completely blocked by the competitive NMDA antagonist, APV (100 microM). The NMDA-mediated cGMP elevation completely depends on NO action, and is abolished by the specific inhibitor of NO synthase, NG-nitro-L-arginine. Moreover, serotonin at 10 microM in the presence of 10 microM pargyline, potently decreases both Ca(2+)- and NMDA receptor-mediated AA and cGMP release in hippocampal synaptoneurosomes. The agonist of 5-HT1A receptor, buspirone, in a way similar to serotonin itself, counteracts the Ca(2+)- and also NMDA receptor-evoked AA release and cGMP accumulation. An antagonist of 5-HT1A receptor, NAN-190, eliminates the effect of serotonin and buspirone on AA and NO/cGMP liberation. An antagonist of serotonergic 5-HT2 receptor, ketanserin, has no effect on the Ca2+ and serotonin action. These results indicate that serotonin, through 5-HT1A receptor, potently antagonizes the action of excitatory amino acid for AA release and NO/cGMP synthesis in the adult rat hippocampus. In conclusion, the interaction of serotonin with the glutamatergic system in the hippocampus may play an important role in the modulation of a signal transduction pathway, and by this molecular mechanism serotonin may exert a neuroprotective effect on hippocampal neurons.[1]


WikiGenes - Universities