The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Species-specific antagonism of Ah receptor action by 2,2',5,5'-tetrachloro- and 2,2',3,3'4,4'-hexachlorobiphenyl.

Using recombinant cell lines showing Ah receptor-controlled expression of a luciferase reporter gene, the interaction of di-ortho-substitute polychlorinated biphenyls (PCBs) with Ah receptor agonists was studied. In the recombinant Hepa1c1c7 mouse hepatoma (H1L1.1c7) cells strong antagonistic interaction of 2,2',5,5'-tetrachlorobiphenyl (PCB52) with luciferase expression induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 3,3',4,4'-tetrachlorobiphenyl (PCB77) was observed, and similarly, between 2,2',3,3',4,4'-hexachlorobiphenyl (PCB128) and PCB77. Accordingly, PCB52 was found to inhibit ethoxyresorufin-O-deethylase (EROD) induction by PCB77 in wild-type Hepa1c1c7 cells. In contrast, the antagonistic effect of PCB52 on TCDD-induced luciferase expression was only minor in recombinant guinea pig GPC16 colon adenocarcinoma (G16L1.1c8) and human HepG2 hepatoma (HG2L1.1c3) cells, and intermediate in recombinant H4IIE rat hepatoma (H4L1.1c4) cells. Gel retardation studies using a 32 P-labelled dioxin responsive element (DRE)-containing oligonucleotide, and ligand binding studies using [3H]TCDD, demonstrated that the species-specific antagonistic activity of PCB52 on Ah receptor-controlled luciferase expression is due to inhibition of Ah receptor ligand and DNA binding. We conclude, that Ah- mediated luciferase expression provides a useful tool to study the species specificity of Ah receptor (ant)agonists.[1]

References

  1. Species-specific antagonism of Ah receptor action by 2,2',5,5'-tetrachloro- and 2,2',3,3'4,4'-hexachlorobiphenyl. Aarts, J.M., Denison, M.S., Cox, M.A., Schalk, M.A., Garrison, P.M., Tullis, K., de Haan, L.H., Brouwer, A. Eur. J. Pharmacol. (1995) [Pubmed]
 
WikiGenes - Universities