The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco.

The ubiC gene of Escherichia coli encodes chorismate pyruvatelyase, an enzyme that converts chorismate into 4-hydroxybenzoate (4HB) and is not normally present in plants. The ubiC gene was expressed in Nicotiana tabacum L. plants under control of a constitutive plant promoter. The gene product was targeted into the plastid by fusing it to the sequence for the chloroplast transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Transgenic plants showed high chorismate pyruvate-lyase activity and accumulated 4HB as beta-glucosides, with the glucose attached to either the hydroxy or the carboxyl function of 4HB. The total content of 4HB glucosides was approximately 0.52% of dry weight, which exceeded the content of untransformed plants by at least a factor of 1000. Feeding experiments with [1,7-13C2]shikimic acid unequivocally proved that the 4HB that was formed in the transgenic plants was not derived from the conventional phenylpropanoid pathway but from the newly introduced chorismate pyruvate-lyase reaction.[1]


WikiGenes - Universities