The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Carbon source regulation of PIS1 gene expression in Saccharomyces cerevisiae involves the MCM1 gene and the two-component regulatory gene, SLN1.

The Saccharomyces cerevisiae PIS1 gene encodes phosphatidylinositol synthase. The amount of phosphatidylinositol synthase is not affected by the presence of inositol and choline in the growth medium. This is unusual because the amounts and/or activities of other phospholipid biosynthetic enzymes are affected by these precursors, and the promoter of the PIS1 gene contains a sequence resembling the regulatory element that coordinates the inositol-mediated regulation (UASINO). We found that transcription of the PIS1 gene was insensitive to inositol and choline and did not require the putative UASINO regulatory sequence or the cognate regulatory genes (INO2 and OPI1). The PIS1 promoter includes sequences (MCEs) that bind the Mcm1 protein. Because the Mcm1 protein interacts with both the Sln1 and the Gal11 regulatory proteins, we examined the effect of mutant alleles of the MCM1 and SLN1 genes and carbon source on expression of the PIS1 gene. We found that expression of the PIS1 gene was reduced when cells were grown in a medium containing glycerol and increased when grown in a medium containing galactose relative to cells grown in a glucose medium. The glycerol-mediated repression of PIS1 gene expression required both the MCM1 gene and the MCEs, whereas the SLN1 gene was required for full galactose-mediated induction of a PIS1-lacZ reporter gene. Thus, PIS1 gene expression is unique among the phospholipid biosynthetic structural genes because it is uncoupled from the inositol response and regulated in response to the carbon source. This is the first example in yeast of a complete circuit linking a stimulus (carbon source) to gene regulation (PIS1) using a two-component regulator (SLN1).[1]

References

 
WikiGenes - Universities