SR Ca(2+)-ATPase/phospholamban in cardiomyocyte function.
Ca ATPase regulates intracellular Ca levels by pumping Ca into sarcoplasmic and endoplasmic reticulum (SER). Phospholamban was first identified as a phosphoprotein in cardiac myocytes. Functional properties of phospholamban by steady-state and presteady-state kinetic studies of Ca pump ATPase suggest that phospholamban functions as an inhibitory co-factor for cardiac Ca ATPase (SERCA 2). Protein kinase A-catalyzed phosphorylation of phospholamban results in the dissociation of phospholamban from the Ca ATPase, thus augmenting the ATPase activity. Phospholamban is found as a homo-pentamer, formed from subunits of 6080 Da in size. PKA-catalyzed and CAM kinase- catalyzed phosphorylation residues (Ser 16 and Thr 17) are located in the N-terminal cytoplasmic domain, whereas the C-terminal 22 residues are extremely hydrophobic and are considered to be embedded in the SR membrane. At least three kinds of Ca ATPase have been found. SERCA 1 is expressed in fast-twitch skeletal muscle, while the SERCA 2 gene encodes two alternatively spliced products, SERCA 2a and 2b. SERCA 2a is expressed in cardiac and slow-twitch skeletal muscles; SERCA 2b in smooth muscle and non-muscle tissues. SERCA 3 is expressed in a broad variety of muscle and non-muscle tissues. In vitro expression systems revealed that the functional properties of Ca transport of SERCA 2 are identical to SERCA 1, but not SERCA 3. In particular, the Ca affinity for Ca transport of SERCA 1 or 2 is lowered by co-expression with phospholamban, whereas that of SERCA 3 is not. Identification of the interaction sites of phospholamban and SERCA 2 helps defining the molecular mode of interaction between the two proteins. Photoactivated cross-linking studies indicated that potential binding residues are located just downstream of the active ATPase site (Asp 351) of SERCA 2, but SERCA 3 is devoid of this sequence. If a chimeric Ca ATPase (CH2) is made from SERCA 2 and 3, in which the SERCA 3 region corresponding to the phospholamban- binding sequence of SERCA 2 is introduced into the remainder of the SERCA 2 molecule, then the interaction with phospholamban is lost. These results suggest that this region of SERCA 2 contains amino acids which are involved in the interaction with phospholamban. By site-directed mutagenesis of amino acids of this region, we were able to show that 6 residues, Lys-Asp-Asp-Lys-Pro-Val402, of SERCA 2 are functionally important for the interaction. When the chimera CH2 was mutated back to SERCA 2 type, mutated CH2 containing these 6 residues of SERCA 2 restored the interaction with phospholamban. Altogether, these 6 residues of SERCA 2 represent the interaction sites for phospholamban. Mutagenesis studies of phospholamban also demonstrated that the hydrophilic, cytoplasmic region of phospholamban contains a potential binding site for SERCA 2. We therefore conclude that the functional interaction between the two proteins occurs in the cytoplasmic region.[1]References
- SR Ca(2+)-ATPase/phospholamban in cardiomyocyte function. Tada, M., Toyofuku, T. J. Card. Fail. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg