The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains.

Escherichia coli strains capable of enhanced synthesis of arginine and urea were produced by derepression of the arginine regulon and simultaneous overexpression of the E. coli carAB and argI genes and the Bacillus subtilis rocF gene. Plasmids expressing carAB driven by their natural promoters were unstable. Therefore, E. coli carAB and argI genes with and without the B. subtilis rocF gene were constructed as a single operon under the regulation of the inducible promoter ptrc. Arginine operator sequences (Arg boxes) from argI were also cloned into the same plasmids for titration of the arginine repressor. Upon overexpression of these genes in E. coli strains, very high carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase catalytic activities were achieved. The biosynthetic capacity of these engineered bacteria when overexpressing the arginine biosynthetic enzymes was 6- to 16-fold higher than that of controls but only if exogenous ornithine was present (ornithine was rate limiting). Overexpression of arginase in bacteria with a derepressed arginine biosynthetic pathway resulted in a 13- to 20-fold increase in urea production over that of controls with the parent vector alone; in this situation, the availability of carbamyl phosphate was rate limiting.[1]


  1. Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains. Tuchman, M., Rajagopal, B.S., McCann, M.T., Malamy, M.H. Appl. Environ. Microbiol. (1997) [Pubmed]
WikiGenes - Universities