The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

argI  -  ornithine carbamoyltransferase 1

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK4247, JW4211
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of argI

 

High impact information on argI

  • Thus, in catabolic OTCase, sequence features in addition to Glu-106 are important for sigmoidal CP saturation, and such a sequence was identified in the C-terminal part [6].
  • In the anabolic OTCase of Escherichia coli the glutamine residue corresponding to Glu-106 was exchanged for glutamate; however, in this case no CP cooperativity was acquired [6].
  • The catabolic OTCase lost most of its homotropic cooperativity and gained anabolic activity when an amino acid residue near the CP binding site, Glu-106, was replaced by alanine or glycine [6].
  • By an in vivo gene fusion technique the 9 C-terminal amino acids of catabolic OTCase were replaced by the homologous 8 amino acids from anabolic OTCase of E. coli; the hybrid enzyme had a markedly reduced homotropic cooperativity [6].
  • An altered form of argI was produced when a 1.6 kilobase DdeI fragment was subcloned into the HincII site of plasmid pUC8 extending the open reading frame an additional 20 nucleotides [7].
 

Chemical compound and disease context of argI

 

Biological context of argI

 

Associations of argI with chemical compounds

  • Citrulline utilizers are argG bradytrophs or strains in which the synthesis of ornithine carbamoyltransferase (either of the F or I type) is specifically depressed by unstable chromosomal rearrangements or stable mutations that presumably affect the operators of those genes [15].
  • Using these mutant argI genes we see a high level of mistranslation at position 8 during phenylalanine starvation whether the codon is UUU or UUC [10].
  • Several arg+ transformants of integration types I and II, obtained using each of the deletion plasmids, were studied, and their ability to de-repress OTC level by proline starvation was compared [16].
  • Activation by AMP and inhibition by spermidine of this chimaeric OTCase do not affect carbamoylphosphate homotropic co-operativity [17].
 

Other interactions of argI

 

Analytical, diagnostic and therapeutic context of argI

  • The minimum inhibitory concentration of kanamycin determined in the B. subtilis argC-neo transcriptional fusion pUL730 and expression of the argF gene product, ornithine carbamoyltransferase (OCTase), in pUL800 were reduced by approximately 3 and 2 fold respectively under conditions of arginine excess and in the presence of pUL2030 [18].
  • Hybridization results and immunological tests indicate that the cloned fragment contains the A. nidulans structural gene coding for ornithine carbamoyltransferase (OTCase) [19].
  • CONCLUSIONS: Our newly established ELISA for OCT using monoclonal antibodies is sensitive enough for clinical application [20].

References

  1. Homologous control sites and DNA transcription starts in the related argF and argI genes of Escherichia coli K12. Piette, J., Cunin, R., Van Vliet, F., Charlier, D., Crabeel, M., Ota, Y., Glansdorff, N. EMBO J. (1982) [Pubmed]
  2. Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria. Falmagne, P., Portetelle, D., Stalon, V. J. Bacteriol. (1985) [Pubmed]
  3. Escherichia coli ornithine carbamolytransferase isoenzymes: evolutionary significance and the isolation of lambdaargF and lambdaargI transducing bacteriophages. Legrain, C., Stalon, V., Glansdorff, N. J. Bacteriol. (1976) [Pubmed]
  4. Molecular cloning, characterization and purification of ornithine carbamoyltransferase from Mycobacterium bovis BCG. Timm, J., Van Rompaey, I., Tricot, C., Massaer, M., Haeseleer, F., Fauconnier, A., Stalon, V., Bollen, A., Jacobs, P. Mol. Gen. Genet. (1992) [Pubmed]
  5. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. Xu, Y., Feller, G., Gerday, C., Glansdorff, N. J. Bacteriol. (2003) [Pubmed]
  6. Converting catabolic ornithine carbamoyltransferase to an anabolic enzyme. Baur, H., Tricot, C., Stalon, V., Haas, D. J. Biol. Chem. (1990) [Pubmed]
  7. The DNA sequence of argI from Escherichia coli K12. Bencini, D.A., Houghton, J.E., Hoover, T.A., Foltermann, K.F., Wild, J.R., O'Donovan, G.A. Nucleic Acids Res. (1983) [Pubmed]
  8. Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains. Tuchman, M., Rajagopal, B.S., McCann, M.T., Malamy, M.H. Appl. Environ. Microbiol. (1997) [Pubmed]
  9. Mistranslation during phenylalanine starvation. Parker, J., Precup, J. Mol. Gen. Genet. (1986) [Pubmed]
  10. Context specific misreading of phenylalanine codons. Precup, J., Ulrich, A.K., Roopnarine, O., Parker, J. Mol. Gen. Genet. (1989) [Pubmed]
  11. Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease. Staskawicz, B.J., Panopoulos, N.J. J. Bacteriol. (1980) [Pubmed]
  12. DNA cleavage of lambda and phi 80 transducing phages carrying the argA, argECBH, argF and argI operons of Escherichia coli K-12 with the restriction endonucleases EcoRI, SmaI and HindIII. Moore, S.K., James, E. Gene (1978) [Pubmed]
  13. Linker insertion mutagenesis based on IS21 transposition: isolation of an AMP-insensitive variant of catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Seitz, T., Berger, B., Nguyen, V.T., Tricot, C., Villeret, V., Schmid, S., Stalon, V., Haas, D. Protein Eng. (2000) [Pubmed]
  14. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Importance of the N-terminal region for dodecameric structure and homotropic carbamoylphosphate cooperativity. Nguyen, V.T., Baker, D.P., Tricot, C., Baur, H., Villeret, V., Dideberg, O., Gigot, D., Stalon, V., Haas, D. Eur. J. Biochem. (1996) [Pubmed]
  15. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12. Legrain, C., Stalon, V., Glansdorff, N., Gigot, D., Piéard, A., Crabeel, M. J. Bacteriol. (1976) [Pubmed]
  16. Regulatory region of the Aspergillus nidulans argB gene. Goc, A., Wegleński, P. Curr. Genet. (1988) [Pubmed]
  17. Allosteric regulation in Pseudomonas aeruginosa catabolic ornithine carbamoyltransferase revisited: association of concerted homotropic cooperative interactions and local heterotropic effects. Tricot, C., Villeret, V., Sainz, G., Dideberg, O., Stalon, V. J. Mol. Biol. (1998) [Pubmed]
  18. Cloning in Escherichia coli of a Bacillus subtilis arginine repressor gene through its ability to confer structural stability on a fragment carrying genes of arginine biosynthesis. Smith, M.C., Mountain, A., Baumberg, S. Mol. Gen. Genet. (1986) [Pubmed]
  19. Cloning and characterization of the ornithine carbamoyltransferase gene from Aspergillus nidulans. Berse, B., Dmochowska, A., Skrzypek, M., Wegleński, P., Bates, M.A., Weiss, R.L. Gene (1983) [Pubmed]
  20. A sensitive ELISA for serum ornithine carbamoyltransferase utilizing the enhancement of immunoreactivity at alkaline pH. Murayama, H., Igarashi, M., Mori, M., Fukuda, Y., Ikemoto, M., Nagata, A. Clin. Chim. Acta (2006) [Pubmed]
 
WikiGenes - Universities