The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gene transcription and chromosome replication in Escherichia coli.

Transcript levels of several Escherichia coli genes involved in chromosome replication and cell division were measured in dnaC2(Ts) mutants synchronized for chromosome replication by temperature shifts. Levels of transcripts from four of the genes, dam, nrdA, mukB, and seqA, were reduced at a certain stage during chromosome replication. The magnitudes of the decreases were similar to those reported previously ftsQ and ftsZ (P. Zhou and C. E. Helmstetter, J. Bacteriol. 176:6100-6106, 1994) but considerably less than those seen with dnaA, gidA, and mioC (P. W. Theisen, J. E. Grimwade, A. C. Leonard, J. A. Bogan, and C. E. Helmstetter, Mol. Microbiol. 10:575-584, 1993). The decreases in transcripts appeared to correlate with the estimated time at which the genes replicated. This same conclusion was reached in studies with synchronous cultures obtained with the baby machine in those instances in which periodicities in transcript levels were clearly evident. The transcriptional levels for two genes, minE and tus, did not fluctuate significantly, whereas the transcripts for one gene, iciA, appeared to increase transiently. The results support the idea that cell cycle timing in E. coli is not governed by timed bursts of gene expression, since the overall findings summarized in this report are generally consistent with cell cycle-dependent transient inhibitions of transcription rather than stimulations.[1]

References

  1. Gene transcription and chromosome replication in Escherichia coli. Zhou, P., Bogan, J.A., Welch, K., Pickett, S.R., Wang, H.J., Zaritsky, A., Helmstetter, C.E. J. Bacteriol. (1997) [Pubmed]
 
WikiGenes - Universities