The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

GABAB receptor-mediated inhibition of tetrodotoxin-resistant GABA release in rodent hippocampal CA1 pyramidal cells.

Tight-seal whole-cell recordings from CA1 pyramidal cells of rodent hippocampus were performed to study GABAB receptor-mediated inhibition of tetrodotoxin (TTX)-resistant IP-SCs. IPSCs were recorded in the presence of TTX and glutamate receptor antagonists. (R)-(-)-baclofen reduced the frequency of TTX-resistant IPSCs by a presynaptic action. The inhibition by (R)-(-)-baclofen was concentration-dependent, was not mimicked by the less effective enantiomer (S)-(+)-baclofen, and was blocked by the GABAB receptor antagonist CGP 55845A, suggesting a specific effect on GABAB receptors. The inhibition persisted in the presence of the Ca2+ channel blocker Cd2+. There was no requirement for an activation of K+ conductances by (R)-(-)-baclofen, because the inhibition of TTX-resistant IPSCs persisted in Ba2+ and Cd2+. Because the time courses of TTX-resistant IPSCs were not changed by (R)-(-)-baclofen, there was no evidence for a selective inhibition of quantal release from a subgroup of GABAergic terminals. (R)-(-)-baclofen reduced the frequency of TTX-resistant IPSCs in guinea pigs and Wistar rats, whereas the inhibition was much smaller in Sprague Dawley rats. In Cd2+ and Ba2+, beta-phorbol-12,13-dibutyrate and forskolin enhanced the frequency of TTX-resistant IPSCs. Only beta-phorbol-12, 13-dibutyrate reduced the inhibition by (R)-(-)-baclofen. We conclude that GABAB receptors inhibit TTX-resistant GABA release through a mechanism independent from the well known effects on Ca2+ or K+ channels. The inhibition of quantal GABA release can be reduced by an activator of protein kinase C.[1]

References

 
WikiGenes - Universities