The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Gabbr1  -  gamma-aminobutyric acid (GABA) B receptor 1

Rattus norvegicus

Synonyms: GABA-B receptor 1, GABA-B-R1, GABA-BR1, GABABR1, Gamma-aminobutyric acid type B receptor subunit 1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gabbr1

 

Psychiatry related information on Gabbr1

 

High impact information on Gabbr1

  • Moreover, the GABAB receptor agonist baclofen, and the antagonist 2-hydroxysaclofen had no effect [9].
  • We propose to designate the classical site as the GABA A and the novel site as the GABA B receptor [10].
  • Direct stimulation of astrocytes, or application of the GABAB-receptor agonist baclofen, potentiated miniature inhibitory postsynaptic currents (mIPSCs) in pyramidal neurons [11].
  • The close correlation of the time courses indicates that fast, G protein-mediated depression of voltage-gated calcium channels and thus direct reduction of the presynaptic calcium influx may contribute to the GABAB receptor-induced inhibition of excitatory synaptic transmission in hippocampal neurons in vitro [12].
  • We examined the effects of the GABAB receptor agonist baclofen and the mu opioid receptor agonist DAGO on postsynaptic currents evoked by minimal stimulation of inhibitory fibers (meIPSCs) in area CA3 [13].
 

Chemical compound and disease context of Gabbr1

 

Biological context of Gabbr1

 

Anatomical context of Gabbr1

 

Associations of Gabbr1 with chemical compounds

  • Baclofen, a selective GABAB receptor agonist, reversibly decreased both evoked and spontaneous, miniature, GABAergic inhibitory postsynaptic currents (eIPSCs and mIPSCs, respectively) [22].
  • Inhibition of the cAMP/PKA cascade also affected basal GABA release and, in a subset of neurons, occluded the effects of baclofen, suggesting that the GABAB receptor-mediated inhibitory action on GABA release was mediated via decreases in PKA activity [22].
  • In contrast, the inducible NO synthase inhibitor L-N(6)-(1-iminoethyl)lysine (20 microg), the GABAB receptor agonist baclofen (0.2 microg), the mixed dopamine receptor antagonist cis-flupenthixol (10 microg), and the oxytocin receptor antagonist d(CH2)5Tyr(Me)-Orn8 -vasotocin (1 microg), were ineffective [26].
  • The CB1 antagonists did not affect muscarinic acetylcholine or GABAB receptor signaling [27].
  • LTDi was mediated by activation of a presynaptic GABAB receptor, because it was blocked by saclofen and CGP55845 [(2S)-3-{[(15)-1-(3, 4-dichlorophenyl)ethyl]amino-2-hydroxypropyl)(phenylmethyl)phosphinic acid] [28].
 

Physical interactions of Gabbr1

 

Regulatory relationships of Gabbr1

 

Other interactions of Gabbr1

 

Analytical, diagnostic and therapeutic context of Gabbr1

References

  1. GABA-B receptor activation in the rat globus pallidus potently suppresses pentylenetetrazol-induced tonic seizures. Chen, L., Chan, Y.S., Yung, W.H. J. Biomed. Sci. (2004) [Pubmed]
  2. Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. Chen, G., van den Pol, A.N. J. Neurosci. (1998) [Pubmed]
  3. Enhanced gamma-aminobutyric acid-B receptor agonist responses and mRNA within the nucleus of the solitary tract in hypertension. Durgam, V.R., Vitela, M., Mifflin, S.W. Hypertension (1999) [Pubmed]
  4. Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. Richards, D.A., Lemos, T., Whitton, P.S., Bowery, N.G. J. Neurochem. (1995) [Pubmed]
  5. The GABAB receptor-positive modulator GS39783 and the GABAB receptor agonist baclofen attenuate the reward-facilitating effects of cocaine: intracranial self-stimulation studies in the rat. Slattery, D.A., Markou, A., Froestl, W., Cryan, J.F. Neuropsychopharmacology (2005) [Pubmed]
  6. Baclofen-induced catatonia: modification by serotonergic agents. Kasture, S.B., Mandhane, S.N., Chopde, C.T. Neuropharmacology (1996) [Pubmed]
  7. Sensitization to psychostimulants and stress after injection of pertussis toxin into the A10 dopamine region. Steketee, J.D., Kalivas, P.W. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  8. Modification of d-amphetamine-induced responses by baclofen in rats. Phillis, B.D., Ong, J., White, J.M., Bonnielle, C. Psychopharmacology (Berl.) (2001) [Pubmed]
  9. Pharmacology of GABA receptor Cl- channels in rat retinal bipolar cells. Feigenspan, A., Wässle, H., Bormann, J. Nature (1993) [Pubmed]
  10. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Hill, D.R., Bowery, N.G. Nature (1981) [Pubmed]
  11. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M. Nat. Neurosci. (1998) [Pubmed]
  12. Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Pfrieger, F.W., Gottmann, K., Lux, H.D. Neuron (1994) [Pubmed]
  13. Heterogeneity in presynaptic regulation of GABA release from hippocampal inhibitory neurons. Lambert, N.A., Wilson, W.A. Neuron (1993) [Pubmed]
  14. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Malan, T.P., Mata, H.P., Porreca, F. Anesthesiology (2002) [Pubmed]
  15. Baclofen induces catatonia in rats. Mehta, A.K., Ticku, M.K. Neuropharmacology (1987) [Pubmed]
  16. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes). Wang, S.J., Wang, K.Y., Wang, W.C. Neuroscience (2004) [Pubmed]
  17. An autocrine role for pituitary GABA: activation of GABA-B receptors and regulation of growth hormone levels. Gamel-Didelon, K., Corsi, C., Pepeu, G., Jung, H., Gratzl, M., Mayerhofer, A. Neuroendocrinology (2002) [Pubmed]
  18. GABA B receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons. Lei, S., McBain, C.J. J. Physiol. (Lond.) (2003) [Pubmed]
  19. GABAB receptor activation inhibits exocytosis in rat pancreatic beta-cells by G-protein-dependent activation of calcineurin. Braun, M., Wendt, A., Buschard, K., Salehi, A., Sewing, S., Gromada, J., Rorsman, P. J. Physiol. (Lond.) (2004) [Pubmed]
  20. Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Isomoto, S., Kaibara, M., Sakurai-Yamashita, Y., Nagayama, Y., Uezono, Y., Yano, K., Taniyama, K. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  21. Age-related changes of the GABA-B receptor in the lumbar spinal cord of male rats and penile erection. Dorfman, V.B., Vega, M.C., Coirini, H. Life Sci. (2006) [Pubmed]
  22. GABAB receptor transduction mechanisms, and cross-talk between protein kinases A and C, in GABAergic terminals synapsing onto neurons of the rat nucleus basalis of Meynert. Kubota, H., Katsurabayashi, S., Moorhouse, A.J., Murakami, N., Koga, H., Akaike, N. J. Physiol. (Lond.) (2003) [Pubmed]
  23. Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. Luján, R., Shigemoto, R., Kulik, A., Juiz, J.M. J. Comp. Neurol. (2004) [Pubmed]
  24. GABAB-receptor-mediated suppression of sympathetic outflow from the spinal cord of neonatal rats. Cheng, Y.W., Ku, M.C., Ho, C.M., Chai, C.Y., Su, C.K. J. Appl. Physiol. (2005) [Pubmed]
  25. Cannabinoids selectively decrease paired-pulse facilitation of perforant path synaptic potentials in the dentate gyrus in vitro. Kirby, M.T., Hampson, R.E., Deadwyler, S.A. Brain Res. (1995) [Pubmed]
  26. The cannabinoid receptor antagonist SR-141716A induces penile erection in male rats: involvement of paraventricular glutamic acid and nitric oxide. Melis, M.R., Succu, S., Mascia, M.S., Sanna, F., Melis, T., Castelli, M.P., Argiolas, A. Neuropharmacology (2006) [Pubmed]
  27. An optimized approach to study endocannabinoid signaling: evidence against constitutive activity of rat brain adenosine A1 and cannabinoid CB1 receptors. Savinainen, J.R., Saario, S.M., Niemi, R., Järvinen, T., Laitinen, J.T. Br. J. Pharmacol. (2003) [Pubmed]
  28. Simultaneous NMDA-dependent long-term potentiation of EPSCs and long-term depression of IPSCs in cultured rat hippocampal neurons. Ivenshitz, M., Segal, M. J. Neurosci. (2006) [Pubmed]
  29. The metabotropic GABAB receptor directly interacts with the activating transcription factor 4. Nehring, R.B., Horikawa, H.P., El Far, O., Kneussel, M., Brandstätter, J.H., Stamm, S., Wischmeyer, E., Betz, H., Karschin, A. J. Biol. Chem. (2000) [Pubmed]
  30. Inhibition of GABAB receptor binding by guanyl nucleotides. Hill, D.R., Bowery, N.G., Hudson, A.L. J. Neurochem. (1984) [Pubmed]
  31. GABAB receptor activation partially inhibits N-methyl-D-aspartate-mediated tyrosine hydroxylase stimulation in rat striatal slices. Arias Montaño, J.A., Martínez-Fong, D., Aceves, J. Eur. J. Pharmacol. (1992) [Pubmed]
  32. Gamma-aminobutyric acid (GABA)-C receptor stimulation increases prolactin (PRL) secretion in cultured rat anterior pituitary cells. Nakayama, Y., Hattori, N., Otani, H., Inagaki, C. Biochem. Pharmacol. (2006) [Pubmed]
  33. Pharmacological discrimination between gamma-aminobutyric acid type B receptors regulating cholecystokinin and somatostatin release from rat neocortex synaptosomes. Gemignani, A., Paudice, P., Bonanno, G., Raiteri, M. Mol. Pharmacol. (1994) [Pubmed]
  34. Cholinergic cell expression in the developing rat medial septal nucleus in vitro is differentially controlled by GABAA and GABAB receptors. Kenigsberg, R.L., Hong, Y., Théorêt, Y. Brain Res. (1998) [Pubmed]
  35. Contributions of calcium-dependent and calcium-independent mechanisms to presynaptic inhibition at a cerebellar synapse. Dittman, J.S., Regehr, W.G. J. Neurosci. (1996) [Pubmed]
  36. GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. Serrats, J., Artigas, F., Mengod, G., Cortés, R. J. Neurochem. (2003) [Pubmed]
  37. GABAB receptor-mediated inhibition of tetrodotoxin-resistant GABA release in rodent hippocampal CA1 pyramidal cells. Jarolimek, W., Misgeld, U. J. Neurosci. (1997) [Pubmed]
  38. 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. Johnson, S.W., Mercuri, N.B., North, R.A. J. Neurosci. (1992) [Pubmed]
  39. GABAergic regulation of cerebral microvascular tone in the rat. Fergus, A., Lee, K.S. J. Cereb. Blood Flow Metab. (1997) [Pubmed]
  40. Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Milbrandt, J.C., Albin, R.L., Caspary, D.M. Neurobiol. Aging (1994) [Pubmed]
 
WikiGenes - Universities