The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Genpharm     4-amino-3-(4- chlorophenyl)butanoic acid

Synonyms: Lioresal, baclofen, Atrofen, Baclophen, Baclospas, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lioresal


Psychiatry related information on Lioresal


High impact information on Lioresal


Chemical compound and disease context of Lioresal

  • The postsynaptic effects mediated by GABAB receptors, i.e., the baclofen-induced hyperpolarization, the bicuculline-resistant GABA response, and the slow inhibitory postsynaptic potential elicited by CA1 afferent stimulation, are all blocked by pertussis toxin (which inactivates some G proteins) [13].
  • In contrast, the baclofen-induced presynaptic depression of the excitatory postsynaptic potential elicited by CA1 afferent stimulation is resistant to the action of pertussis toxin and is not antagonized by phaclofen [13].
  • Both the baclofen- and 5-HT-induced currents were nearly abolished in animals pretreated with pertussis toxin [14].
  • For a group of 15 patients with acquired pendular nystagmus (APN), visual acuity improved significantly with gabapentin, but not with baclofen [15].
  • Prior exposure to pertussis toxin did not affect the inward current response to NA and MCh, while the outward K+ current responses induced by application of MCh or the GABAB agonist baclofen were blocked [16].

Biological context of Lioresal


Anatomical context of Lioresal


Associations of Lioresal with other chemical compounds

  • Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus [25].
  • We found that acute inhibition of cells in the AcbSh via administration of the GABAA receptor agonist muscimol or the GABAB receptor agonist baclofen elicited intense, dose-related feeding without altering water intake [26].
  • At saturating concentrations of agonists, the combined application of baclofen and either somatostatin, serotonin, or 2-chloroadenosine produced effects that were subadditive and often completely occlusive [27].
  • More interestingly, the wv/wv neurons were excited rather than inhibited by dopamine and the GABA(B) agonist baclofen [28].
  • The mode of action of baclofen on the physiology of the rat hippocampus was investigated by studying its effect on electrophysiological responses in the hippocampal slice preparation and by measuring biochemical parameters related to glutamate uptake, binding, and release [29].

Gene context of Lioresal

  • Activation of the GABA(B) receptor by the specific agonist baclofen leads to a marked translocation and accumulation of CREB2 from the cytoplasm into the nucleus [30].
  • GABABR2 is localized to the cell surface in transfected COS cells, and negatively couples to adenylyl cyclase in response to GABA, baclofen, and 3-aminopropyl(methyl)phosphinic acid in CHO cells lacking GABABR1 [31].
  • Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid [32].
  • The inhibitory effect of baclofen on the LH beta mRNA level lasted at least for 6 h following treatment [33].
  • The loss of GIRK1 or GIRK2 was correlated with equivalent, dramatic reductions in baclofen-evoked current in CA1 neurons [34].

Analytical, diagnostic and therapeutic context of Lioresal

  • First, we performed a double-blind, randomized, controlled crossover trial of bolus intrathecal injections of 25, 50, and 75 microg of baclofen and placebo [3].
  • Tests for motor function, neurologic examination, and assessments by the patients correctly indicated when baclofen was being infused in all cases [1].
  • Racemic baclofen, its enantiomers, and the GABA(B)-receptor antagonist CGP36742 were administered before stimulation of TLESRs by a liquid meal and air insufflation [21].
  • The stimulation of mu-opioid receptors in the ventral pallidum also elicits motor activation, and this is blocked by baclofen microinjection into the VTA [35].
  • Irreversible activation of G proteins by intracellular perfusion with the nonhydrolyzable analog of GTP, GMP-PNP, occluded the baclofen responses, and evoked an inward current, consistent with the synaptically mediated conductance [36].


  1. Intrathecal baclofen for severe spinal spasticity. Penn, R.D., Savoy, S.M., Corcos, D., Latash, M., Gottlieb, G., Parke, B., Kroin, J.S. N. Engl. J. Med. (1989) [Pubmed]
  2. Baclofen for intractable hiccups. Burke, A.M., White, A.B., Brill, N. N. Engl. J. Med. (1988) [Pubmed]
  3. Intrathecal baclofen for the treatment of dystonia in patients with reflex sympathetic dystrophy. van Hilten, B.J., van de Beek, W.J., Hoff, J.I., Voormolen, J.H., Delhaas, E.M. N. Engl. J. Med. (2000) [Pubmed]
  4. Dual actions of substance P on nociception: possible role of endogenous opioids. Frederickson, R.C., Burgis, V., Harrell, C.E., Edwards, J.D. Science (1978) [Pubmed]
  5. Intrathecal baclofen for spasticity in cerebral palsy. Albright, A.L., Cervi, A., Singletary, J. JAMA (1991) [Pubmed]
  6. Hallucinations after withdrawal of baclofen. Lees, A.J., Clarke, C.R., Harrison, M.J. Lancet (1977) [Pubmed]
  7. A controlled clinical trial of baclofen as protective therapy in early Huntington's disease. Shoulson, I., Odoroff, C., Oakes, D., Behr, J., Goldblatt, D., Caine, E., Kennedy, J., Miller, C., Bamford, K., Rubin, A. Ann. Neurol. (1989) [Pubmed]
  8. Effect of baclofen on sleep-related periodic leg movements. Guilleminault, C., Flagg, W. Ann. Neurol. (1984) [Pubmed]
  9. Baclofen therapy may be associated with chorea in Alzheimer's disease. Crystal, H.A. Ann. Neurol. (1990) [Pubmed]
  10. Baclofen use in the treatment of alcohol delirium tremens. Leggio, L., Abenavoli, L., Caputo, F., Gasbarrini, G., Addolorato, G. Arch. Intern. Med. (2005) [Pubmed]
  11. Novel GABA responses from rod-driven retinal horizontal cells. Qian, H., Dowling, J.E. Nature (1993) [Pubmed]
  12. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Newberry, N.R., Nicoll, R.A. Nature (1984) [Pubmed]
  13. Pre- and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Dutar, P., Nicoll, R.A. Neuron (1988) [Pubmed]
  14. Voltage- and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. Williams, J.T., Colmers, W.F., Pan, Z.Z. J. Neurosci. (1988) [Pubmed]
  15. A double-blind controlled study of gabapentin and baclofen as treatment for acquired nystagmus. Averbuch-Heller, L., Tusa, R.J., Fuhry, L., Rottach, K.G., Ganser, G.L., Heide, W., Büttner, U., Leigh, R.J. Ann. Neurol. (1997) [Pubmed]
  16. Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. McCormick, D.A. J. Neurosci. (1992) [Pubmed]
  17. Light induces chromatin modification in cells of the mammalian circadian clock. Crosio, C., Cermakian, N., Allis, C.D., Sassone-Corsi, P. Nat. Neurosci. (2000) [Pubmed]
  18. Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Pfrieger, F.W., Gottmann, K., Lux, H.D. Neuron (1994) [Pubmed]
  19. Enhancement of synaptic efficacy by presynaptic GABA(B) receptors. Brenowitz, S., David, J., Trussell, L. Neuron (1998) [Pubmed]
  20. GABAB receptor inhibition of P-type Ca2+ channels in central neurons. Mintz, I.M., Bean, B.P. Neuron (1993) [Pubmed]
  21. Activation of the GABA(B) receptor inhibits transient lower esophageal sphincter relaxations in dogs. Lehmann, A., Antonsson, M., Bremner-Danielsen, M., Flärdh, M., Hansson-Brändén, L., Kärrberg, L. Gastroenterology (1999) [Pubmed]
  22. Central inhibitory dysfunctions: mechanisms and clinical implications. Wiesenfeld-Hallin, Z., Aldskogius, H., Grant, G., Hao, J.X., Hökfelt, T., Xu, X.J. The Behavioral and brain sciences. (1997) [Pubmed]
  23. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Kang, J., Jiang, L., Goldman, S.A., Nedergaard, M. Nat. Neurosci. (1998) [Pubmed]
  24. Nerve growth cone guidance mediated by G protein-coupled receptors. Xiang, Y., Li, Y., Zhang, Z., Cui, K., Wang, S., Yuan, X.B., Wu, C.P., Poo, M.M., Duan, S. Nat. Neurosci. (2002) [Pubmed]
  25. Presynaptic inhibition of miniature excitatory synaptic currents by baclofen and adenosine in the hippocampus. Scanziani, M., Capogna, M., Gähwiler, B.H., Thompson, S.M. Neuron (1992) [Pubmed]
  26. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. Stratford, T.R., Kelley, A.E. J. Neurosci. (1997) [Pubmed]
  27. Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. Sodickson, D.L., Bean, B.P. J. Neurosci. (1998) [Pubmed]
  28. The weaver mutation reverses the function of dopamine and GABA in mouse dopaminergic neurons. Guatteo, E., Fusco, F.R., Giacomini, P., Bernardi, G., Mercuri, N.B. J. Neurosci. (2000) [Pubmed]
  29. The blocking action of baclofen on excitatory transmission in the rat hippocampal slice. Olpe, H.R., Baudry, M., Fagni, L., Lynch, G. J. Neurosci. (1982) [Pubmed]
  30. The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. White, J.H., McIllhinney, R.A., Wise, A., Ciruela, F., Chan, W.Y., Emson, P.C., Billinton, A., Marshall, F.H. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  31. Molecular identification of the human GABABR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABABR1. Martin, S.C., Russek, S.J., Farb, D.H. Mol. Cell. Neurosci. (1999) [Pubmed]
  32. Ts65Dn, a Mouse Model of Down Syndrome, Exhibits Increased GABAB-Induced Potassium Current. Best, T.K., Siarey, R.J., Galdzicki, Z. J. Neurophysiol. (2007) [Pubmed]
  33. Differential effect of baclofen on hypothalamic GnRH and pituitary LH beta gene expression in steroid-treated rats. Cho, B.N., Kim, K. Mol. Cells (1997) [Pubmed]
  34. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. Koyrakh, L., Luján, R., Colón, J., Karschin, C., Kurachi, Y., Karschin, A., Wickman, K. J. Neurosci. (2005) [Pubmed]
  35. Dopamine depletion reorganizes projections from the nucleus accumbens and ventral pallidum that mediate opioid-induced motor activity. Churchill, L., Klitenick, M.A., Kalivas, P.W. J. Neurosci. (1998) [Pubmed]
  36. G protein-coupled receptors mediate a fast excitatory postsynaptic current in CA3 pyramidal neurons in hippocampal slices. Miller, L.D., Petrozzino, J.J., Connor, J.A. J. Neurosci. (1995) [Pubmed]
WikiGenes - Universities