The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis.

BACKGROUND: Reexpression of the fetal beta-myosin heavy chain (beta-MHC) gene was reported to be a marker for phenotypic reprogramming and cardiac hypertrophy in rats. Recent in vitro studies strongly suggested a role of angiotensin II for phenotypic reprogramming. In the present investigation, beta-MHC gene expression was studied in an experimental model of pressure-over-load hypertrophy that is not associated with a concurrent activation of the circulating renin-angiotensin system. METHODS AND RESULTS: Hypertrophy was induced in rats by ascending aortic banding (n = 40). After 7 days, myosin contained 31% (P < .05) of the beta-MHC isoform in banded but < 5% in sham-operated animals. However, no specific elevation of beta-MHC mRNA levels was found in banded animals. In contrast, hearts of rats with abdominal aortic banding displayed a marked increase in beta-MHC mRNA levels (3-fold to 5-fold, P < .05). Both the left ventricular weight and left ventricular peak systolic pressure were significantly elevated compared with sham-operated animals (abdominal aortic banding, +13% and 164 +/- 7 mm Hg; ascending aortic banding, +27% and 191 +/- 9 mm Hg). Plasma renin activity was elevated in rats with abdominal aortic banding (2.5-fold, P < .05) but not in rats with ascending aortic banding. CONCLUSIONS: The results of the present work do not support the concept that increased beta-MHC gene expression is a general "stable late marker" of myocardial hypertrophy in rats. Our results suggest that the stimulation of the renin-angiotensin system is crucial for the activation of the beta-MHC gene.[1]

References

 
WikiGenes - Universities