The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cardiomegaly

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cardiomegaly

 

Psychiatry related information on Cardiomegaly

 

High impact information on Cardiomegaly

  • In an effort to discover regulators of cardiac hypertrophy, we performed a eukaryotic expression screen for activators of the atrial natriuretic factor (ANF) gene, a cardiac-specific marker of hypertrophic signaling [10].
  • KChIP2, a gene encoding three auxiliary subunits of Kv4.2 and Kv4.3, is preferentially expressed in the adult heart, and its expression is downregulated in cardiac hypertrophy [11].
  • We show that cardiac hypertrophy is induced by the calcium-dependent phosphatase calcineurin, which dephosphorylates the transcription factor NF-AT3, enabling it to translocate to the nucleus [12].
  • We hypothesized that inducing cardiac hypertrophy with recombinant human growth hormone might be an effective approach to the treatment of idiopathic dilated cardiomyopathy, a condition in which compensatory cardiac hypertrophy is believed to be deficient [13].
  • The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy [14].
 

Chemical compound and disease context of Cardiomegaly

 

Biological context of Cardiomegaly

 

Anatomical context of Cardiomegaly

 

Gene context of Cardiomegaly

 

Analytical, diagnostic and therapeutic context of Cardiomegaly

References

  1. Characterization of angiotensin II receptors in cultured adult rat cardiac fibroblasts. Coupling to signaling systems and gene expression. Crabos, M., Roth, M., Hahn, A.W., Erne, P. J. Clin. Invest. (1994) [Pubmed]
  2. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. Kook, H., Lepore, J.J., Gitler, A.D., Lu, M.M., Wing-Man Yung, W., Mackay, J., Zhou, R., Ferrari, V., Gruber, P., Epstein, J.A. J. Clin. Invest. (2003) [Pubmed]
  3. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. Sadoshima, J., Montagne, O., Wang, Q., Yang, G., Warden, J., Liu, J., Takagi, G., Karoor, V., Hong, C., Johnson, G.L., Vatner, D.E., Vatner, S.F. J. Clin. Invest. (2002) [Pubmed]
  4. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. Li, Q., Li, B., Wang, X., Leri, A., Jana, K.P., Liu, Y., Kajstura, J., Baserga, R., Anversa, P. J. Clin. Invest. (1997) [Pubmed]
  5. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. Nicol, R.L., Frey, N., Pearson, G., Cobb, M., Richardson, J., Olson, E.N. EMBO J. (2001) [Pubmed]
  6. MicroRNA-133 controls cardiac hypertrophy. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M.L., Segnalini, P., Gu, Y., Dalton, N.D., Elia, L., Latronico, M.V., Høydal, M., Autore, C., Russo, M.A., Dorn, G.W., Ellingsen, O., Ruiz-Lozano, P., Peterson, K.L., Croce, C.M., Peschle, C., Condorelli, G. Nat. Med. (2007) [Pubmed]
  7. The Caenorhabditis elegans homologue of Down syndrome critical region 1, RCN-1, inhibits multiple functions of the phosphatase calcineurin. Lee, J.I., Dhakal, B.K., Lee, J., Bandyopadhyay, J., Jeong, S.Y., Eom, S.H., Kim, d.o. .H., Ahnn, J. J. Mol. Biol. (2003) [Pubmed]
  8. Aggravating effects of isolated caging on the development of hypertension and its complications in stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY). Horie, R., Yamori, Y., Nara, Y., Sawamura, M., Mizushima, S. Clinical and experimental hypertension. Part A, Theory and practice. (1991) [Pubmed]
  9. Therapeutic potential of rho-kinase inhibitors in cardiovascular diseases. Hirooka, Y., Shimokawa, H. American journal of cardiovascular drugs : drugs, devices, and other interventions. (2005) [Pubmed]
  10. The Transcriptional Coactivator CAMTA2 Stimulates Cardiac Growth by Opposing Class II Histone Deacetylases. Song, K., Backs, J., McAnally, J., Qi, X., Gerard, R.D., Richardson, J.A., Hill, J.A., Bassel-Duby, R., Olson, E.N. Cell (2006) [Pubmed]
  11. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Kuo, H.C., Cheng, C.F., Clark, R.B., Lin, J.J., Lin, J.L., Hoshijima, M., Nguyêñ-Trân, V.T., Gu, Y., Ikeda, Y., Chu, P.H., Ross, J., Giles, W.R., Chien, K.R. Cell (2001) [Pubmed]
  12. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Molkentin, J.D., Lu, J.R., Antos, C.L., Markham, B., Richardson, J., Robbins, J., Grant, S.R., Olson, E.N. Cell (1998) [Pubmed]
  13. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. Fazio, S., Sabatini, D., Capaldo, B., Vigorito, C., Giordano, A., Guida, R., Pardo, F., Biondi, B., Saccà, L. N. Engl. J. Med. (1996) [Pubmed]
  14. The transcriptional repressor Nab1 is a specific regulator of pathological cardiac hypertrophy. Buitrago, M., Lorenz, K., Maass, A.H., Oberdorf-Maass, S., Keller, U., Schmitteckert, E.M., Ivashchenko, Y., Lohse, M.J., Engelhardt, S. Nat. Med. (2005) [Pubmed]
  15. Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Hein, L., Altman, J.D., Kobilka, B.K. Nature (1999) [Pubmed]
  16. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Zisman, A., Peroni, O.D., Abel, E.D., Michael, M.D., Mauvais-Jarvis, F., Lowell, B.B., Wojtaszewski, J.F., Hirshman, M.F., Virkamaki, A., Goodyear, L.J., Kahn, C.R., Kahn, B.B. Nat. Med. (2000) [Pubmed]
  17. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Takimoto, E., Champion, H.C., Li, M., Belardi, D., Ren, S., Rodriguez, E.R., Bedja, D., Gabrielson, K.L., Wang, Y., Kass, D.A. Nat. Med. (2005) [Pubmed]
  18. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Xin, H.B., Senbonmatsu, T., Cheng, D.S., Wang, Y.X., Copello, J.A., Ji, G.J., Collier, M.L., Deng, K.Y., Jeyakumar, L.H., Magnuson, M.A., Inagami, T., Kotlikoff, M.I., Fleischer, S. Nature (2002) [Pubmed]
  19. Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. Senbonmatsu, T., Ichihara, S., Price, E., Gaffney, F.A., Inagami, T. J. Clin. Invest. (2000) [Pubmed]
  20. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M., Higashiyama, S. Nat. Med. (2002) [Pubmed]
  21. Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. Knowles, J.W., Esposito, G., Mao, L., Hagaman, J.R., Fox, J.E., Smithies, O., Rockman, H.A., Maeda, N. J. Clin. Invest. (2001) [Pubmed]
  22. Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. Liang, F., Gardner, D.G. J. Clin. Invest. (1999) [Pubmed]
  23. Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. Holtwick, R., van Eickels, M., Skryabin, B.V., Baba, H.A., Bubikat, A., Begrow, F., Schneider, M.D., Garbers, D.L., Kuhn, M. J. Clin. Invest. (2003) [Pubmed]
  24. Adiponectin-mediated modulation of hypertrophic signals in the heart. Shibata, R., Ouchi, N., Ito, M., Kihara, S., Shiojima, I., Pimentel, D.R., Kumada, M., Sato, K., Schiekofer, S., Ohashi, K., Funahashi, T., Colucci, W.S., Walsh, K. Nat. Med. (2004) [Pubmed]
  25. Cardiac 7-transmembrane-spanning domain receptor portfolios: diversify, diversify, diversify. Liggett, S.B. J. Clin. Invest. (2006) [Pubmed]
  26. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. Li, H.H., Kedar, V., Zhang, C., McDonough, H., Arya, R., Wang, D.Z., Patterson, C. J. Clin. Invest. (2004) [Pubmed]
  27. Mice with cardiomyocyte-specific disruption of the endothelin-1 gene are resistant to hyperthyroid cardiac hypertrophy. Shohet, R.V., Kisanuki, Y.Y., Zhao, X.S., Siddiquee, Z., Franco, F., Yanagisawa, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  28. Endothelin-3 induces hypertrophy of cardiomyocytes by the endogenous endothelin-1-mediated mechanism. Tamamori, M., Ito, H., Adachi, S., Akimoto, H., Marumo, F., Hiroe, M. J. Clin. Invest. (1996) [Pubmed]
  29. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. Shiojima, I., Sato, K., Izumiya, Y., Schiekofer, S., Ito, M., Liao, R., Colucci, W.S., Walsh, K. J. Clin. Invest. (2005) [Pubmed]
  30. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. Yamamoto, M., Yang, G., Hong, C., Liu, J., Holle, E., Yu, X., Wagner, T., Vatner, S.F., Sadoshima, J. J. Clin. Invest. (2003) [Pubmed]
  31. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Paradis, P., Dali-Youcef, N., Paradis, F.W., Thibault, G., Nemer, M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  32. Regulation of myosin heavy chain expression in the hearts of hypertensive rats by testosterone. Morano, I., Gerstner, J., Rüegg, J.C., Ganten, U., Ganten, D., Vosberg, H.P. Circ. Res. (1990) [Pubmed]
  33. Nonsynchronous accumulation of alpha-skeletal actin and beta-myosin heavy chain mRNAs during early stages of pressure-overload--induced cardiac hypertrophy demonstrated by in situ hybridization. Schiaffino, S., Samuel, J.L., Sassoon, D., Lompré, A.M., Garner, I., Marotte, F., Buckingham, M., Rappaport, L., Schwartz, K. Circ. Res. (1989) [Pubmed]
  34. Modification of subcellular organelles in pressure-overloaded heart by etomoxir, a carnitine palmitoyltransferase I inhibitor. Rupp, H., Elimban, V., Dhalla, N.S. FASEB J. (1992) [Pubmed]
 
WikiGenes - Universities