The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

Bmyo  -  Beta myosin heavy chain

Rattus norvegicus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Bmyo


Psychiatry related information on Bmyo


High impact information on Bmyo


Chemical compound and disease context of Bmyo


Biological context of Bmyo


Anatomical context of Bmyo


Associations of Bmyo with chemical compounds


Regulatory relationships of Bmyo


Other interactions of Bmyo


Analytical, diagnostic and therapeutic context of Bmyo

  • Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, beta-myosin heavy chain, and Cyt c promoter activities [38].
  • 35S-Labeled complementary RNA (cRNA) probes and in situ hybridization procedures were used for analysis of the regional distribution of newly formed transcripts from alpha-skeletal actin (alpha-sk-actin) and beta-myosin heavy chain (beta-MHC) genes during the early stages of pressure overload [39].
  • SDS-PAGE and Western blot analysis showed that whereas myosin heavy chain expression underwent a transition to predominance of the early development isoform, beta-myosin heavy chain, there was no reexpression of the fetal isoforms of either troponin I or troponin T in the rat heart at 24 months of age [40].
  • We developed an RT-PCR assay to study both the time course and the mechanism for the triiodothyronine (T(3))-induced transcription of the alpha- and beta-myosin heavy chain (MHC) genes in vivo on the basis of the quantity of specific heterogeneous nuclear RNA (hnRNA) [41].
  • No differences existed in the profile of myosin protein isoforms or beta-myosin heavy chain mRNA in hearts between the flight and synchronous control groups [42].


  1. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Tang, Y.D., Kuzman, J.A., Said, S., Anderson, B.E., Wang, X., Gerdes, A.M. Circulation (2005) [Pubmed]
  2. The cardiac beta-myosin heavy chain isogene is induced selectively in alpha 1-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. Waspe, L.E., Ordahl, C.P., Simpson, P.C. J. Clin. Invest. (1990) [Pubmed]
  3. Favorable left ventricular remodeling following large myocardial infarction by exercise training. Effect on ventricular morphology and gene expression. Orenstein, T.L., Parker, T.G., Butany, J.W., Goodman, J.M., Dawood, F., Wen, W.H., Wee, L., Martino, T., McLaughlin, P.R., Liu, P.P. J. Clin. Invest. (1995) [Pubmed]
  4. Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Wiesner, R.J., Ehmke, H., Faulhaber, J., Zak, R., Rüegg, J.C. Circulation (1997) [Pubmed]
  5. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Hasegawa, K., Lee, S.J., Jobe, S.M., Markham, B.E., Kitsis, R.N. Circulation (1997) [Pubmed]
  6. Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Simonini, A., Long, C.S., Dudley, G.A., Yue, P., McElhinny, J., Massie, B.M. Circ. Res. (1996) [Pubmed]
  7. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. Chang, K.C., Figueredo, V.M., Schreur, J.H., Kariya, K., Weiner, M.W., Simpson, P.C., Camacho, S.A. J. Clin. Invest. (1997) [Pubmed]
  8. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. Parker, T.G., Packer, S.E., Schneider, M.D. J. Clin. Invest. (1990) [Pubmed]
  9. Clenbuterol induces hypertrophy of the latissimus dorsi muscle and heart in the rat with molecular and phenotypic changes. Petrou, M., Wynne, D.G., Boheler, K.R., Yacoub, M.H. Circulation (1995) [Pubmed]
  10. Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Kawano, H., Cody, R.J., Graf, K., Goetze, S., Kawano, Y., Schnee, J., Law, R.E., Hsueh, W.A. Hypertension (2000) [Pubmed]
  11. Inhibitory regulation of hypertrophy by endogenous atrial natriuretic peptide in cultured cardiac myocytes. Horio, T., Nishikimi, T., Yoshihara, F., Matsuo, H., Takishita, S., Kangawa, K. Hypertension (2000) [Pubmed]
  12. Regulation of beta myosin heavy chain, c-myc and c-fos proto-oncogenes in thyroid hormone-induced hypertrophy of the rat myocardium. Green, N.K., Gammage, M.D., Franklyn, J.A., Heagerty, A.M., Sheppard, M.C. Clin. Sci. (1993) [Pubmed]
  13. Inhibitory effect of trilinolein on angiotensin II-induced cardiomyocyte hypertrophy. Liu, J.C., Cheng, T.H., Lee, H.M., Lee, W.S., Shih, N.L., Chen, Y.L., Chen, J.J., Chan, P. Eur. J. Pharmacol. (2004) [Pubmed]
  14. Impact of beta-myosin heavy chain isoform expression on cross-bridge cycling kinetics. Rundell, V.L., Manaves, V., Martin, A.F., de Tombe, P.P. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  15. Transcription factor RTEF-1 mediates alpha1-adrenergic reactivation of the fetal gene program in cardiac myocytes. Stewart, A.F., Suzow, J., Kubota, T., Ueyama, T., Chen, H.H. Circ. Res. (1998) [Pubmed]
  16. Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. Yue, T.L., Gu, J.L., Wang, C., Reith, A.D., Lee, J.C., Mirabile, R.C., Kreutz, R., Wang, Y., Maleeff, B., Parsons, A.A., Ohlstein, E.H. J. Biol. Chem. (2000) [Pubmed]
  17. GATA-5 is involved in leukemia inhibitory factor-responsive transcription of the beta-myosin heavy chain gene in cardiac myocytes. Morimoto, T., Hasegawa, K., Kaburagi, S., Kakita, T., Masutani, H., Kitsis, R.N., Matsumori, A., Sasayama, S. J. Biol. Chem. (1999) [Pubmed]
  18. Full-length rat alpha and beta cardiac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. McNally, E.M., Kraft, R., Bravo-Zehnder, M., Taylor, D.A., Leinwand, L.A. J. Mol. Biol. (1989) [Pubmed]
  19. Increased cardiac workload by closure of the ductus arteriosus leads to hypertrophy and apoptosis rather than to hyperplasia in the late fetal period. van den Hoff, M.J., Deprez, R.H., Ruijter, J.M., de Boer, P.A., Tesink-Taekema, S., Buffing, A.A., Lamers, W.H., Moorman, A.F. Naunyn Schmiedebergs Arch. Pharmacol. (2004) [Pubmed]
  20. Pressure- and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Calderone, A., Takahashi, N., Izzo, N.J., Thaik, C.M., Colucci, W.S. Circulation (1995) [Pubmed]
  21. Sp3 proteins negatively regulate beta myosin heavy chain gene expression during skeletal muscle inactivity. Tsika, G., Ji, J., Tsika, R. Mol. Cell. Biol. (2004) [Pubmed]
  22. Immunocytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Eppenberger, M.E., Hauser, I., Baechi, T., Schaub, M.C., Brunner, U.T., Dechesne, C.A., Eppenberger, H.M. Dev. Biol. (1988) [Pubmed]
  23. The ageing spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Boluyt, M.O., Bing, O.H., Lakatta, E.G. Eur. Heart J. (1995) [Pubmed]
  24. Endothelin-1 is involved in norepinephrine-induced ventricular hypertrophy in vivo. Acute effects of bosentan, an orally active, mixed endothelin ETA and ETB receptor antagonist. Kaddoura, S., Firth, J.D., Boheler, K.R., Sugden, P.H., Poole-Wilson, P.A. Circulation (1996) [Pubmed]
  25. Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro. Potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy. Sadoshima, J., Izumo, S. Circ. Res. (1995) [Pubmed]
  26. Endogenous endothelin-1 mediates cardiac hypertrophy and switching of myosin heavy chain gene expression in rat ventricular myocardium. Ichikawa, K.I., Hidai, C., Okuda, C., Kimata, S.I., Matsuoka, R., Hosoda, S., Quertermous, T., Kawana, M. J. Am. Coll. Cardiol. (1996) [Pubmed]
  27. Effects of candesartan and cilazapril on rats with myocardial infarction assessed by echocardiography. Yoshiyama, M., Takeuchi, K., Omura, T., Kim, S., Yamagishi, H., Toda, I., Teragaki, M., Akioka, K., Iwao, H., Yoshikawa, J. Hypertension (1999) [Pubmed]
  28. Efficient inhibition of the development of cardiac remodeling by a long-acting calcium antagonist amlodipine. Yamazaki, T., Komuro, I., Zou, Y., Kudoh, S., Shiojima, I., Mizuno, T., Hiroi, Y., Nagai, R., Yazaki, Y. Hypertension (1998) [Pubmed]
  29. Nitric oxide inhibits endothelin-1-induced cardiomyocyte hypertrophy through cGMP-mediated suppression of extracellular-signal regulated kinase phosphorylation. Cheng, T.H., Shih, N.L., Chen, S.Y., Lin, J.W., Chen, Y.L., Chen, C.H., Lin, H., Cheng, C.F., Chiu, W.T., Wang, D.L., Chen, J.J. Mol. Pharmacol. (2005) [Pubmed]
  30. Increased protein kinase C activity in myotrophin-induced myocyte growth. Sil, P., Kandaswamy, V., Sen, S. Circ. Res. (1998) [Pubmed]
  31. Constitutive expression of HSP 72 in swine heart. Locke, M., Tanguay, R.M., Ianuzzo, C.D. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  32. Cardiac muscle protein gene expression in the endotoxin-treated rat. Macallan, D.C., Griffin, G.E. Clin. Sci. (1994) [Pubmed]
  33. Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. Yue, P., Long, C.S., Austin, R., Chang, K.C., Simpson, P.C., Massie, B.M. J. Mol. Cell. Cardiol. (1998) [Pubmed]
  34. c-Jun is regulated by combination of enhanced expression and phosphorylation in acute-overloaded rat heart. Nadruz, W., Kobarg, C.B., Kobarg, J., Franchini, K.G. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  35. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Torsoni, A.S., Marin, T.M., Velloso, L.A., Franchini, K.G. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  36. Activation of TGF-beta1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Matsumoto-Ida, M., Takimoto, Y., Aoyama, T., Akao, M., Takeda, T., Kita, T. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  37. Aldosterone directly stimulates cardiac myocyte hypertrophy. Okoshi, M.P., Yan, X., Okoshi, K., Nakayama, M., Schuldt, A.J., O'Connell, T.D., Simpson, P.C., Lorell, B.H. J. Card. Fail. (2004) [Pubmed]
  38. Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Xia, Y., Buja, L.M., Scarpulla, R.C., McMillin, J.B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  39. Nonsynchronous accumulation of alpha-skeletal actin and beta-myosin heavy chain mRNAs during early stages of pressure-overload--induced cardiac hypertrophy demonstrated by in situ hybridization. Schiaffino, S., Samuel, J.L., Sassoon, D., Lompré, A.M., Garner, I., Marotte, F., Buckingham, M., Rappaport, L., Schwartz, K. Circ. Res. (1989) [Pubmed]
  40. Discoordinate regulation of contractile protein gene expression in the senescent rat myocardium. Ball, K.L., Solaro, R.J. J. Mol. Cell. Cardiol. (1994) [Pubmed]
  41. Triiodothyronine-mediated myosin heavy chain gene transcription in the heart. Danzi, S., Ojamaa, K., Klein, I. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  42. Altered actin and myosin expression in muscle during exposure to microgravity. Thomason, D.B., Morrison, P.R., Oganov, V., Ilyina-Kakueva, E., Booth, F.W., Baldwin, K.M. J. Appl. Physiol. (1992) [Pubmed]
WikiGenes - Universities