The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia.

Aplysia, a marine mollusc, has significant amounts of acetylcholinesterase in its hemolymph, reaching maximum levels in the adults with reproductive maturity [Srivatsan M., et al. (1992) J. comp. Physiol. 162, 29-37]. Since hemolymph of mature Aplysia is neurotrophic to Aplysia neurons in culture [Schacher S. and Proshanski E. (1983) J. Neurosci. 3, 2403-2413], we examined whether acetylcholinesterase is a hemolymph neurotrophic factor. Dopaminergic neurons from the pedal ganglia of young adult Aplysia were maintained in culture in defined medium or defined medium supplemented with hemolymph. After 24 h, neurons in defined medium supplemented with hemolymph were well attached to the substratum and exhibited multiple, long neurites. In contrast, neurons in defined medium alone attached poorly and exhibited one or two short neurites. When acetylcholinesterase was inhibited with a specific, membrane-impermeable inhibitor (1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide) which binds to its catalytic and peripheral anionic sites, the neurotrophic effect of hemolymph was significantly reduced. However, inhibition of the catalytic site alone with membrane impermeable echothiophate still resulted in enhanced neurite growth. An analogue of acetylcholine, carbachol, which is not hydrolysed by acetylcholinesterase, did not interfere with neurite growth when added to the supplemented medium. Acetylcholinesterase isolated from the hemolymph and highly purified human acetylcholinesterase also promoted neurite growth in Aplysia neurons. These results show that i) acetylcholinesterase circulating in the hemolymph promotes neurite growth of adult neurons in culture; ii) the growth promoting action of acetylcholinesterase is independent of its function of hydrolysing acetylcholine and iii) the peripheral anionic site of acetylcholinesterase appears to be involved in neurite regeneration.[1]

References

 
WikiGenes - Universities