The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pathways of peroxynitrite oxidation of thiol groups.

Peroxynitrite mediates the oxidation of the thiol group of both cysteine and glutathione. This process is associated with oxygen consumption. At acidic pH and a cysteine/peroxynitrite molar ratio of < or = 1.2, there was a single fast phase of oxygen consumption, which increased with increasing concentrations of both cysteine and oxygen. At higher molar ratios the profile of oxygen consumption became biphasic, with a fast phase (phase I) that decreased with increasing cysteine concentration, followed by a slow phase (phase II) whose rate of oxygen consumption increased with increasing cysteine concentration. Oxygen consumption in phase I was inhibited by desferrioxamine and 5,5-dimethyl-1-pyrroline N-oxide, but not by mannitol; superoxide dismutase also inhibited oxygen consumption in phase I, while catalase added during phase II decreased the rate of oxygen consumption. For both cysteine and glutathione, oxygen consumption in phase I was maximal at neutral to acidic pH: in contrast, total thiol oxidation was maximal at alkaline pH. EPR spin-trapping studies using N-tert-butyl-alpha-phenylnitrone indicated that the yield of thiyl radical adducts had a pH profile comparable with that found for oxygen consumption. The apparent second-order rate constants for the reactions of peroxynitrite with cysteine and glutathione were 1290 +/- 30 M-1.S-1 and 281 +/- 6 M-1.S-1 respectively at pH 5.75 and 37 degrees C. These results are consistent with two different pathways participating in the reaction of peroxynitrite with low-molecular-mass thiols: (a) the reaction of the peroxynitrite anion with the protonated thiol group, in a second-order process likely to involve a two-electron oxidation, and (b) the reaction of peroxynitrous acid, or a secondary species derived from it, with the thiolate in a one-electron transfer process that yields thiyl radicals capable of initiating an oxygen-dependent radical chain reaction.[1]

References

  1. Pathways of peroxynitrite oxidation of thiol groups. Quijano, C., Alvarez, B., Gatti, R.M., Augusto, O., Radi, R. Biochem. J. (1997) [Pubmed]
 
WikiGenes - Universities