The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA.

GAP-43 is a membrane phosphoprotein that is important for the development and plasticity of neural connections. In undifferentiated PC12 pheochromocytoma cells, GAP-43 mRNA degrades rapidly ( t = 5 h), but becomes stable when cells are treated with nerve growth factor. To identify trans- acting factors that may influence mRNA stability, we combined column chromatography and gel mobility shift assays to isolate GAP-43 mRNA binding proteins from neonatal bovine brain tissue. This resulted in the isolation of two proteins that bind specifically and competitively to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Partial amino acid sequencing revealed that one of the RNA binding proteins coincides with FBP (far upstream element binding protein), previously characterized as a protein that resembles hnRNP K and which binds to a single-stranded, pyrimidine-rich DNA sequence upstream of the c -myc gene to activate its expression. The other binding protein shares sequence homology with PTB, a polypyrimidine tract binding protein implicated in RNA splicing and regulation of translation initiation. The two proteins bind to a 26 nt pyrimidine-rich sequence lying 300 nt downstream of the end of the coding region, in an area shown by others to confer instability on a reporter mRNA in transient transfection assays. We therefore propose that FBP and the PTB-like protein may compete for binding at the same site to influence the stability of GAP-43 mRNA.[1]

References

  1. Identification of two proteins that bind to a pyrimidine-rich sequence in the 3'-untranslated region of GAP-43 mRNA. Irwin, N., Baekelandt, V., Goritchenko, L., Benowitz, L.I. Nucleic Acids Res. (1997) [Pubmed]
 
WikiGenes - Universities