The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase.

Cases of familial amyotrophic lateral sclerosis (fALS; a neurodegenerative disorder) have been reported in which the gene for Cu/Zn superoxide dismutase (CuZnSOD) was mutated. Several studies with the fALS mutant CuZnSOD in transgenic mice and cells showed that the fALS mutations act through an as yet undefined dominant gain-of-function mechanism. Wild-type CuZnSOD catalyzes the dismutation of superoxide (O(2)(-).) but also produces hydroxyl radicals (.OH) with H(2)O(2) as substrate. Two laboratories have recently demonstrated that the .OH production ability was preferentially enhanced by the fALS mutant CuZnSOD, suggesting that this might be the function gained in fALS. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of wild-type CuZnSOD was also associated with increased .OH production and impaired muscle function. Enhanced formation of .OH was detected, by spin trapping, in brain and muscle extracts of the Tg-CuZnSOD mice. Three independently derived Tg-CuZnSOD lines showed muscle abnormalities, reflected by altered electromyography (EMG) and diminished performance in the rope grip test. After treatment with paraquat (PQ), a widely used herbicide and O(2)(-).-generating compound, muscle disability significantly deteriorated in Tg-CuZnSOD mice but not in control mice. The results indicate that elevated levels of CuZnSOD cause indigenous long-term oxidative stress leading to impairment of muscle function. These findings may provide valuable clues about the concurred role of indigenous oxidative stress and exogenous agents in the etiology of sporadic ALS and several other neurodegenerative diseases in which a specific subset of neurons is affected.[1]

References

  1. Oxidative stress mediates impairment of muscle function in transgenic mice with elevated level of wild-type Cu/Zn superoxide dismutase. Peled-Kamar, M., Lotem, J., Wirguin, I., Weiner, L., Hermalin, A., Groner, Y. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
 
WikiGenes - Universities