The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand.

OBJECTIVE: To characterize Fas antigen expression on the cell surface, and to determine the effect of this expression in rheumatic diseases using a newly established gld-congenic MRL strain of mice (MRL/gld), which is defective in its functional Fas ligand (Fas-L). METHODS: Flow cytometric analyses of lymphoid cells and macrophages were performed using anti-Fas and other cell surface markers. Histopathologic manifestations were examined using immunochemistry and light and electron microscopy. Serum levels of IgG and anti-DNA antibodies were measured by single radial immunodiffusion and enzyme-linked immunosorbent assay, respectively. RESULTS: MRL/gld mice developed systemic lymphadenopathy with an accumulation of Thy1.2+, B220+ and CD4-, CD8- T cells, which both express the Fas antigen. Splenic B cells positive for surface IgM and/or surface IgD, and resident peritoneal macrophages exhibited up-regulated expression of the Fas antigen, at much higher levels than those observed in MRL/MpJ-+/+ (MRL/+) mice. Forms of rheumatic disease were observed in these mice, although not in C3H/HeJ-gld/gld mice. These forms included diffuse glomerulonephritis, granulomatous arteritis, and arthritis, and were associated with the infiltration of mononuclear cells expressing the Fas antigen. Serum levels of IgG and anti-DNA antibodies were significantly increased in MRL/gld mice compared with MRL/+ mice. CONCLUSION: Rheumatic disease was generated by the gld gene in mice with an MRL background, as it is by the lpr gene, which is a Fas deletion mutant, associated with autoimmune traits. Rheumatic disease in this MRL strain was initiated by an incapacity for Fas/Fas-L-induced apoptosis, resulting in the development of autoimmunity and allowing for a persistent immune response in the affected lesions.[1]

References

  1. Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Ito, M.R., Terasaki, S., Itoh, J., Katoh, H., Yonehara, S., Nose, M. Arthritis Rheum. (1997) [Pubmed]
 
WikiGenes - Universities