The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of major histocompatibility complex class I gene expression in thyroid cells. Role of the cAMP response element-like sequence.

The major histocompatibility complex ( MHC) class I gene cAMP response element (CRE)-like site, -107 to -100 base pairs, is a critical component of a previously unrecognized silencer, -127 to -90 bp, important for thyrotropin (TSH)/cAMP-mediated repression in thyrocytes. TSH/cAMP induced-silencer activity is associated with the formation of novel complexes with the 38-base pair silencer, whose appearance requires the CRE and involves ubiquitous and thyroid-specific proteins as follows: the CRE-binding protein, a Y-box protein termed thyrotropin receptor (TSHR) suppressor element protein-1 (TSEP-1); thyroid transcription factor-1 (TTF-1); and Pax-8. TTF-1 is an enhancer of class I promoter activity; Pax-8 and TSEP-1 are suppressors. TSH/cAMP decreases TTF-1 complex formation with the silencer, thereby decreasing maximal class I expression; TSH/cAMP enhance TSEP-1 and Pax-8 complex formation in association with their repressive actions. Oligonucleotides that bind TSEP-1, not Pax-8, prevent formation of the TSH/cAMP-induced complexes associated with TSH-induced class I suppression, i.e. TSEP-1 appears to be the dominant repressor factor associated with TSH/cAMP-decreased class I activity and formation of the novel complexes. TSEP-1, TTF-1, and/or Pax-8 are involved in TSH/cAMP-induced negative regulation of the TSH receptor gene in thyrocytes, suppression of MHC class II, and up-regulation of thyroglobulin. TSH/cAMP coordinate regulation of common transcription factors may, therefore, be the basis for self-tolerance and the absence of autoimmunity in the face of TSHR-mediated increases in gene products that are important for thyroid growth and function but are able to act as autoantigens.[1]

References

  1. Regulation of major histocompatibility complex class I gene expression in thyroid cells. Role of the cAMP response element-like sequence. Saji, M., Shong, M., Napolitano, G., Palmer, L.A., Taniguchi, S.I., Ohmori, M., Ohta, M., Suzuki, K., Kirshner, S.L., Giuliani, C., Singer, D.S., Kohn, L.D. J. Biol. Chem. (1997) [Pubmed]
 
WikiGenes - Universities