Regulation of major histocompatibility complex class I gene expression in thyroid cells. Role of the cAMP response element-like sequence.
The major histocompatibility complex ( MHC) class I gene cAMP response element (CRE)-like site, -107 to -100 base pairs, is a critical component of a previously unrecognized silencer, -127 to -90 bp, important for thyrotropin (TSH)/cAMP-mediated repression in thyrocytes. TSH/cAMP induced-silencer activity is associated with the formation of novel complexes with the 38-base pair silencer, whose appearance requires the CRE and involves ubiquitous and thyroid-specific proteins as follows: the CRE-binding protein, a Y-box protein termed thyrotropin receptor (TSHR) suppressor element protein-1 (TSEP-1); thyroid transcription factor-1 (TTF-1); and Pax-8. TTF-1 is an enhancer of class I promoter activity; Pax-8 and TSEP-1 are suppressors. TSH/cAMP decreases TTF-1 complex formation with the silencer, thereby decreasing maximal class I expression; TSH/cAMP enhance TSEP-1 and Pax-8 complex formation in association with their repressive actions. Oligonucleotides that bind TSEP-1, not Pax-8, prevent formation of the TSH/cAMP-induced complexes associated with TSH-induced class I suppression, i.e. TSEP-1 appears to be the dominant repressor factor associated with TSH/cAMP-decreased class I activity and formation of the novel complexes. TSEP-1, TTF-1, and/or Pax-8 are involved in TSH/cAMP-induced negative regulation of the TSH receptor gene in thyrocytes, suppression of MHC class II, and up-regulation of thyroglobulin. TSH/cAMP coordinate regulation of common transcription factors may, therefore, be the basis for self-tolerance and the absence of autoimmunity in the face of TSHR-mediated increases in gene products that are important for thyroid growth and function but are able to act as autoantigens.[1]References
- Regulation of major histocompatibility complex class I gene expression in thyroid cells. Role of the cAMP response element-like sequence. Saji, M., Shong, M., Napolitano, G., Palmer, L.A., Taniguchi, S.I., Ohmori, M., Ohta, M., Suzuki, K., Kirshner, S.L., Giuliani, C., Singer, D.S., Kohn, L.D. J. Biol. Chem. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg