The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Self Tolerance

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Self Tolerance

 

High impact information on Self Tolerance

 

Chemical compound and disease context of Self Tolerance

 

Biological context of Self Tolerance

 

Anatomical context of Self Tolerance

 

Associations of Self Tolerance with chemical compounds

 

Gene context of Self Tolerance

  • The role of complement in the maintenance of self-tolerance has been examined in two models: an immunoglobulin transgenic model of peripheral tolerance and a lupus-like murine model of CD95 (Fas) deficiency [27].
  • We show that E2F2 is required for immunologic self-tolerance [28].
  • These results add a novel enzymatic function for AIRE and suggest an indispensable role of the Ub proteasome pathway in the establishment of self-tolerance, in which AIRE is involved [29].
  • Thus, the CD25(+)CD4(+) regulatory T cell population engaged in dominant self-tolerance may require CTLA-4 but not CD28 as a costimulatory molecule for its functional activation [30].
  • We posit that their heightened expression of various costimulatory molecules, including CD80, CD106, I-A, and CD40, and their elevated production of various cytokines, including IL-12 and IL-1beta, may explain why Sle3-bearing DCs may be superior at breaching self tolerance [31].
 

Analytical, diagnostic and therapeutic context of Self Tolerance

References

  1. TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Belghith, M., Bluestone, J.A., Barriot, S., Mégret, J., Bach, J.F., Chatenoud, L. Nat. Med. (2003) [Pubmed]
  2. APECED: a monogenic autoimmune disease providing new clues to self-tolerance. Peterson, P., Nagamine, K., Scott, H., Heino, M., Kudoh, J., Shimizu, N., Antonarakis, S.E., Krohn, K.J. Immunol. Today (1998) [Pubmed]
  3. T cell responses to tuberculin purified protein derivative in primary biliary cirrhosis: evidence for defective T cell function. Jones, D.E., Palmer, J.M., Leon, M.P., Yeaman, S.J., Bassendine, M.F., Diamond, A.G. Gut (1997) [Pubmed]
  4. The development of Graves' disease and the CTLA-4 gene on chromosome 2q33. Heward, J.M., Allahabadia, A., Armitage, M., Hattersley, A., Dodson, P.M., Macleod, K., Carr-Smith, J., Daykin, J., Daly, A., Sheppard, M.C., Holder, R.L., Barnett, A.H., Franklyn, J.A., Gough, S.C. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  5. A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease. Taylor, J.C., Gough, S.C., Hunt, P.J., Brix, T.H., Chatterjee, K., Connell, J.M., Franklyn, J.A., Hegedus, L., Robinson, B.G., Wiersinga, W.M., Wass, J.A., Zabaneh, D., Mackay, I., Weetman, A.P. J. Clin. Endocrinol. Metab. (2006) [Pubmed]
  6. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Sakaguchi, S. Annu. Rev. Immunol. (2004) [Pubmed]
  7. The molecular basis of allorecognition. Sherman, L.A., Chattopadhyay, S. Annu. Rev. Immunol. (1993) [Pubmed]
  8. Identity of cells that imprint H-2-restricted T-cell specificity in the thymus. Lo, D., Sprent, J. Nature (1986) [Pubmed]
  9. Is self tolerance H-2 restricted? Matzinger, P., Waterfield, J.D. Nature (1980) [Pubmed]
  10. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Thien, M., Phan, T.G., Gardam, S., Amesbury, M., Basten, A., Mackay, F., Brink, R. Immunity (2004) [Pubmed]
  11. T cell recognition of a highly conserved epitope in heat shock protein 60: self-tolerance maintained by TCR distinguishing between asparagine and aspartic acid. Lillicrap, M.S., Duggleby, R.C., Goodall, J.C., Gaston, J.S. Int. Immunol. (2004) [Pubmed]
  12. Induction of self-tolerance and enhanced stress protein synthesis in L-132 cells by cadmium chloride and by hyperthermia. Cervera, J. Cell Biol. Int. Rep. (1985) [Pubmed]
  13. Interferon gamma plays a critical role in induced cell death of effector T cell: a possible third mechanism of self-tolerance. Liu, Y., Janeway, C.A. J. Exp. Med. (1990) [Pubmed]
  14. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. Evel-Kabler, K., Song, X.T., Aldrich, M., Huang, X.F., Chen, S.Y. J. Clin. Invest. (2006) [Pubmed]
  15. Induction of tolerance using Fas ligand: a double-edged immunomodulator. Askenasy, N., Yolcu, E.S., Yaniv, I., Shirwan, H. Blood (2005) [Pubmed]
  16. Smad3 potentiates transforming growth factor beta (TGFbeta )-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes. Wildey, G.M., Patil, S., Howe, P.H. J. Biol. Chem. (2003) [Pubmed]
  17. Essential role of IkappaB kinase alpha in thymic organogenesis required for the establishment of self-tolerance. Kinoshita, D., Hirota, F., Kaisho, T., Kasai, M., Izumi, K., Bando, Y., Mouri, Y., Matsushima, A., Niki, S., Han, H., Oshikawa, K., Kuroda, N., Maegawa, M., Irahara, M., Takeda, K., Akira, S., Matsumoto, M. J. Immunol. (2006) [Pubmed]
  18. MHC restriction, self-tolerance and the thymus. Howard, J. Nature (1980) [Pubmed]
  19. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., Sakaguchi, S. Nat. Immunol. (2002) [Pubmed]
  20. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Sun, H., Lu, B., Li, R.Q., Flavell, R.A., Taneja, R. Nat. Immunol. (2001) [Pubmed]
  21. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Stanislawski, T., Voss, R.H., Lotz, C., Sadovnikova, E., Willemsen, R.A., Kuball, J., Ruppert, T., Bolhuis, R.L., Melief, C.J., Huber, C., Stauss, H.J., Theobald, M. Nat. Immunol. (2001) [Pubmed]
  22. Autoreactivity to lipoate and a conjugated form of lipoate in primary biliary cirrhosis. Bruggraber, S.F., Leung, P.S., Amano, K., Quan, C., Kurth, M.J., Nantz, M.H., Benson, G.D., Van de Water, J., Luketic, V., Roche, T.E., Ansari, A.A., Coppel, R.L., Gershwin, M.E. Gastroenterology (2003) [Pubmed]
  23. Autoregulation of thyroid-specific gene transcription by thyroglobulin. Suzuki, K., Lavaroni, S., Mori, A., Ohta, M., Saito, J., Pietrarelli, M., Singer, D.S., Kimura, S., Katoh, R., Kawaoi, A., Kohn, L.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  24. Bacterial motif DNA as an adjuvant for the breakdown of immune self-tolerance to pyruvate dehydrogenase complex. Jones, D.E., Palmer, J.M., Burt, A.D., Walker, C., Robe, A.J., Kirby, J.A. Hepatology (2002) [Pubmed]
  25. Effector mechanisms in cyclosporine A-induced syngeneic graft-versus-host disease. Role of CD4+ and CD8+ T lymphocyte subsets. Hess, A.D., Fischer, A.C., Beschorner, W.E. J. Immunol. (1990) [Pubmed]
  26. Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. Lee, K.J., Hahn, G.M. J. Cell. Physiol. (1988) [Pubmed]
  27. A critical role for complement in maintenance of self-tolerance. Prodeus, A.P., Goerg, S., Shen, L.M., Pozdnyakova, O.O., Chu, L., Alicot, E.M., Goodnow, C.C., Carroll, M.C. Immunity (1998) [Pubmed]
  28. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Murga, M., Fernández-Capetillo, O., Field, S.J., Moreno, B., Borlado, L.R., Fujiwara, Y., Balomenos, D., Vicario, A., Carrera, A.C., Orkin, S.H., Greenberg, M.E., Zubiaga, A.M. Immunity (2001) [Pubmed]
  29. AIRE functions as an E3 ubiquitin ligase. Uchida, D., Hatakeyama, S., Matsushima, A., Han, H., Ishido, S., Hotta, H., Kudoh, J., Shimizu, N., Doucas, V., Nakayama, K.I., Kuroda, N., Matsumoto, M. J. Exp. Med. (2004) [Pubmed]
  30. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., Mak, T.W., Sakaguchi, S. J. Exp. Med. (2000) [Pubmed]
  31. T cell hyperactivity in lupus as a consequence of hyperstimulatory antigen-presenting cells. Zhu, J., Liu, X., Xie, C., Yan, M., Yu, Y., Sobel, E.S., Wakeland, E.K., Mohan, C. J. Clin. Invest. (2005) [Pubmed]
  32. Generating p53-specific cytotoxic T lymphocytes by recombinant adenoviral vector-based vaccination in mice, but not man. Kuball, J., Schuler, M., Antunes Ferreira, E., Herr, W., Neumann, M., Obenauer-Kutner, L., Westreich, L., Huber, C., Wölfel, T., Theobald, M. Gene Ther. (2002) [Pubmed]
  33. Systemic transforming growth factor-beta1 gene therapy induces Foxp3+ regulatory cells, restores self-tolerance, and facilitates regeneration of beta cell function in overtly diabetic nonobese diabetic mice. Luo, X., Yang, H., Kim, I.S., Saint-Hilaire, F., Thomas, D.A., De, B.P., Ozkaynak, E., Muthukumar, T., Hancock, W.W., Crystal, R.G., Suthanthiran, M. Transplantation (2005) [Pubmed]
  34. Mycobacterial Cpn10 promotes recognition of the mammalian homologue by a mycobacterium-specific antiserum. Minto, M., Galli, G., Gianazza, E., Eberini, I., Legname, G., Fossati, G., Modena, D., Marcucci, F., Mascagni, P., Ghezzi, P., Fratelli, M. Biochim. Biophys. Acta (1998) [Pubmed]
 
WikiGenes - Universities