The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Activation of c-Myc uncouples DNA replication from activation of G1-cyclin-dependent kinases.

Proto-oncogenes like c-myc are thought to control exit from the cell cycle rather than progression through the cell cycle itself. We now present a different view of Myc function. Exponentially growing Rat1-MycER fibroblasts were size-fractionated by centrifugal elutriation. In these cells, activation of cyclin E- and cyclin A-dependent kinases, degradation of p27, hyperphosphorylation of retinoblastoma protein and activation of E2F occur sequentially at specific cell sizes. Upon activation of Myc, however, these transitions all occur simultaneously in small cells immediately after exit from mitosis. In contrast, Myc has no discernible effect on the cell size at which DNA replication is initiated. These data show first that Myc controls the activity of G1 cyclin-dependent kinases independently from the transition between quiescence and proliferation and from any effect on cell growth in size. These data also provide evidence of at least one dominant mechanism besides activation of E2F and of cyclin E/cdk2 kinase, which prevents DNA replication unless a critical cell size has been reached.[1]

References

  1. Activation of c-Myc uncouples DNA replication from activation of G1-cyclin-dependent kinases. Pusch, O., Bernaschek, G., Eilers, M., Hengstschläger, M. Oncogene (1997) [Pubmed]
 
WikiGenes - Universities