The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolic deesterification of tazarotene in human blood and rat and human liver microsomes.

Tazarotene is a novel acetylenic retinoid for the treatment of psoriasis and acne. We examined (1) the hydrolysis of tazarotene in blood from Japanese-American and Caucasian subjects, (2) the esterases responsible for this hydrolysis in human blood, and (3) tazarotene hydrolysis in rat and human liver microsomes. Tazarotene hydrolysis and enzyme inhibition were assessed by monitoring the disappearance of tazarotene and the appearance of its primary metabolite tazarotenic acid by HPLC. In blood, tazarotene was converted mainly to tazarotenic acid via first-order kinetics, and there was no statistically significant difference in the hydrolytic (metabolic) rate of tazarotene in uninhibited Japanese-American and Caucasian blood. Physostigmine (a cholinesterase inhibitor), bis(p-nitrophenyl) phosphate (a carboxylesterase inhibitor), and EDTA (an aromatic esterase inhibitor) did not significantly affect tazarotene hydrolysis in blood. Paraoxon, an inhibitor of all serine esterases including cholinesterase and carboxylesterase, decreased the hydrolysis of tazarotene to tazarotenic acid by 95% in both blood and liver microsomes. In conclusion, blood and liver esterases play a significant role in the hydrolysis of tazarotene to tazarotenic acid, and paraoxon-inhibitable forms of esterases are involved in this hydrolysis in humans.[1]

References

  1. Metabolic deesterification of tazarotene in human blood and rat and human liver microsomes. Madhu, C., Duff, S., Baumgarten, V., Rix, P., Small, D., Tang-Liu, D. Journal of pharmaceutical sciences. (1997) [Pubmed]
 
WikiGenes - Universities