Ultrastructural relationships of spinal primary afferent fibres with neuronal and non-neuronal cells in the myenteric plexus of the cat oesophago-gastric junction.
Spinal primary afferent fibres innervating the myenteric area in the oesophago-gastric junction of the cat were selectively labelled by anterogradely transported cholera toxin B subunit-horseradish peroxidase conjugate injected into thoracic dorsal root ganglia. The ultrastructure of these labelled primary afferent fibres was studied in order to determine whether they display close relationships with specific cell types in the myenteric plexus. Horseradish peroxidase was revealed with tetramethylbenzidine stabilized with ammonium heptamolybdate or with the tetramethylbenzidine/tungstate reaction in order to visualize the cytoplasmic organelles and the axolemma, respectively. The labelled primary afferent fibres were unmyelinated. Two kinds of profiles of labelled fibres containing vesicles and mitochondrial accumulations were found: (i) fibres running in myenteric connectives in isolated nerve bundles, and (ii) fibres within the myenteric ganglia. The first kind had small areas of axolemma with no glial cell covering, whereas the second kind had little or no glial cell covering (termed naked primary afferent fibres). In addition, labelled fibres containing few vesicles and mitochondria and running in nerve bundles surrounded by perineurium were numerous. Within the myenteric ganglia, naked primary afferent fibres contacted myenteric neurons. The contacts were mainly axosomatic. No synaptic specializations were distinguished. In the interganglionic area, some labelled fibres terminated close to blood vessels. The intraganglionic naked primary afferent fibres are suggested to be mechanoreceptors. Their exposed axolemma might allow both mechanotransduction and release of neurotransmitters which could act on myenteric neurons. Because they are protected by their glial cell sheath and by bundles of collagen fibrils, interganglionic primary afferent fibres are likely to be less exposed to deformation.[1]References
- Ultrastructural relationships of spinal primary afferent fibres with neuronal and non-neuronal cells in the myenteric plexus of the cat oesophago-gastric junction. Mazzia, C., Clerc, N. Neuroscience (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg