The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Functional complementation of UL3.5-negative pseudorabies virus by the bovine herpesvirus 1 UL3.5 homolog.

The UL3.5 gene is positionally conserved but highly variable in size and sequence in different members of the Alphaherpesvirinae and is absent from herpes simplex virus genomes. We have shown previously that the pseudorabies virus (PrV) UL3.5 gene encodes a nonstructural protein which is required for secondary envelopment of intracytoplasmic virus particles in the trans-Golgi region. In the absence of UL3.5 protein, naked nucleocapsids accumulate in the cytoplasm, release of infectious virions is drastically reduced, and plaque formation in cell culture is inhibited (W. Fuchs, B. G. Klupp, H. Granzow, H.-J. Rziha, and T. C. Mettenleiter, J. Virol. 70:3517-3527, 1996). To assay functional complementation by a heterologous herpesviral UL3.5 protein, the UL3.5 gene of bovine herpesvirus 1 (BHV-1) was inserted at two different sites within the genome of UL3.5-negative PrV. In cells infected with the PrV recombinants the BHV-1 UL3.5 gene product was identified as a 17-kDa protein which was identical in size to the UL3.5 protein detected in BHV-1-infected cells. Expression of BHV-1 UL3.5 compensated for the lack of PrV UL3.5, resulting in a ca. 1,000-fold increase in virus titer and restoration of plaque formation in cell culture. Also, the intracellular block in viral egress was resolved by the BHV-1 UL3.5 gene. We conclude that the UL3.5 proteins of PrV and BHV-1 are functionally related and are involved in a common step in the egress of alphaherpesviruses.[1]


WikiGenes - Universities