Mosaicism due to a somatic mutation of the androgen receptor gene determines phenotype in androgen insensitivity syndrome.
Premature stop codons of the human androgen receptor ( AR) gene are usually associated with a complete androgen insensitivity syndrome. We, however, identified an adult patient with a 46,XY karyotype carrying a premature stop codon in exon 1 of the AR gene presenting with signs of partial virilization: pubic hair Tanner stage 4 and clitoral enlargement. No other family members were affected. A point mutation at codon position 172 of the AR gene was detected that replaced the original TTA (Leu) with a premature stop codon TGA (opal). Careful examination of the sequencing gel, however, also identified a wild-type allele, indicating a mosaicism. In addition, elimination of the unique AflII recognition site induced by the mutation was incomplete, thus confirming the coexistence of mutant and wild-type AR alleles in the patient. Normal R1881 binding and a normal 110/112-kDa AR doublet in Western immunoblots consolidated the molecular genetic data by demonstrating the expression of the wild-type AR in the patient's genital skin fibroblasts. Transfection analysis revealed that only relatively high plasmid concentrations carrying the mutated AR complementary DNA lead to expression of a shortened AR due to downstream reinitiation at methionine 189. Thus, reinitiation does not play a role in the presentation of the phenotype; rather, the partial virilization is caused by the expression of the wild-type AR due to a somatic mosaic. We conclude that somatic mosaicism of the AR gene can represent a substantial factor for the individual phenotype by shifting it to a higher degree of virilization than expected from the genotype of the mutant allele alone.[1]References
- Mosaicism due to a somatic mutation of the androgen receptor gene determines phenotype in androgen insensitivity syndrome. Holterhus, P.M., Brüggenwirth, H.T., Hiort, O., Kleinkauf-Houcken, A., Kruse, K., Sinnecker, G.H., Brinkmann, A.O. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg