cAMP and purinergic P2y receptors upregulate and enhance inducible NO synthase mRNA and protein in vivo.
Adenosine 3',5'-cyclic monophosphate (cAMP) and purinergic P2y receptor agonists upregulate inducible nitric oxide (NO) synthase (iNOS) but inhibit Escherichia coli endotoxin lipopolysaccharide (LPS)- and cytokine-mediated upregulation of iNOS in cultured cells. We examined the effects of cAMP and P2y receptor agonists on the iNOS system in vivo. Intratracheal administration of dibutyryl-cAMP (DBcAMP, 0.1 and 1 mg/kg), a P2y receptor agonist [2-methylthioadenosine 5'-triphosphate (MeS-ATP), 5 mg/kg], or LPS (0.6 mg/kg) to rats 2 h before bronchoalveolar lavage (BAL) increased iNOS mRNA (competitor-equalized reverse transcription-polymerase chain reaction) and iNOS protein (Western blot) in rat alveolar macrophages compared with the effects of sterile phosphate-buffered saline (0.5 ml it). At equal levels of upregulation of iNOS mRNA, 1) LPS, but not DBcAMP or MeS-ATP, upregulated nuclear transcription factor-kappa B (NF-kappa B) and 2) iNOS protein and formation of NO were greater in alveolar macrophages from LPS- and MeS-ATP-treated rats than from DBcAMP-treated rats. Administration of DBcAMP or MeS-AMP 15 min before LPS did not inhibit LPS-induced alveolar macrophage-derived iNOS mRNA, iNOS protein, and NO. Diethyldithiocarbamate (DETC, 5 mg/kg it) inhibited LPS-induced iNOS mRNA but did not affect upregulation of iNOS mRNA produced by the other agonists. We conclude that an LPS-dependent and -independent pathway of iNOS mRNA induction exists in vivo. The former is activated by IPS and most cytokines, is associated with upregulation of NF-kappa B and inhibited by DETC, and elicits an inflammatory response. The latter, activated by DBcAMP and MeS-ATP, is not associated with upregulation of NF-kappa B, inhibition by DETC, or activation of inflammation. The two systems are additive in vivo rather than antagonistic. Speculatively, if the LPS-independent iNOS pathway exists in humans, the iNOS in tissues from patients taking drugs affecting cAMP or P2y receptors may be iatrogenic rather than pathogenetic in origin.[1]References
- cAMP and purinergic P2y receptors upregulate and enhance inducible NO synthase mRNA and protein in vivo. Greenberg, S.S., Zhao, X., Wang, J.F., Hua, L., Ouyang, J. Am. J. Physiol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg