The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication.

The hepatitis B virus and the mammalian hepadnavirus genomes encode for a short open reading frame called x. Expression of the protein product (HBx) appears necessary for establishment of natural infection. However, in vitro studies have suggested a multifunctional role for HBx as an indirect transcriptional transactivator of a variety of different viral and cellular promoters. Indeed, HBx has no known direct DNA binding properties but may interact with transcription factors as well as activate intracellular signaling pathways associated with cell growth. To further address the possible functional role of HBx in the life cycle of hepatitis B virus, we performed an analysis using the yeast two-hybrid system to screen a cDNA library derived from a hepatocellular carcinoma cell line with a HBx fusion bait in an attempt to identify cellular partners that may bind to and alter the biologic properties of HBx. A HBx-interacting protein that specifically complexes with the carboxy terminus of wild-type HBx was identified and designated XIP. This 9.6-kDa protein is capable of binding to HBx in vitro, and transient and stable expression in hepatocellular carcinoma cells abolishes the transactivation properties of HBx on luciferase constructs driven by AP-1 and endogenous hepatitis B virus enhancer/promoter elements. Investigation of the role of XIP in hepatitis B virus replication in differentiated hepatocellular carcinoma cells revealed that XIP expression reduces wild-type hepatitis B virus replication to levels observed following transfection with an HBx-minus virus. In contrast, the replication levels of the duck hepatitis B virus, a hepadnavirus that lacks the x open reading frame, were unchanged in the context of XIP expression. We propose that one of the physiologic functions of the cellular protein XIP is to negatively regulate HBx activity and thus to alter the replication life cycle of the virus.[1]


WikiGenes - Universities