The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action.

Aldosterone is a major regulator of salt balance and blood pressure, exerting its effects via the mineralocorticoid receptor (MR). To analyze the regulatory mechanisms controlling tissue-specific expression of the human MR ( hMR) in vivo, we have developed transgenic mouse models expressing the SV40 large T antigen ( TAg) under the control of each of the two promoters of the hMR gene ( P1 or P2). Unexpectedly, all five P1- TAg founder animals died prematurely from voluminous malignant liposarcomas originating from brown adipose tissue, as evidenced by the expression of the mitochondrial uncoupling protein ucp1, indicating that the proximal P1 promoter was transcriptionally active in brown adipocytes. No such hibernoma occurred in P2- TAg transgenic mice. Appropriate tissue-specific usage of P1 promoter sequences was confirmed by demonstrating the presence of endogenous MR in both neoplastic and normal brown adipose tissue. Several cell lines were derived from hibernomas; among them, the T37i cells can undergo terminal differentiation into brown adipocytes, which remain capable of expressing ucp1 upon adrenergic or retinoic acid stimulation. These cells possess endogenous functional MR, thus providing a new model to explore molecular mechanisms of mineralocorticoid action. Our data broaden the known functions of aldosterone and suggest a potential role for MR in adipocyte differentiation and regulation of thermogenesis.[1]


  1. Hibernoma development in transgenic mice identifies brown adipose tissue as a novel target of aldosterone action. Zennaro, M.C., Le Menuet, D., Viengchareun, S., Walker, F., Ricquier, D., Lombès, M. J. Clin. Invest. (1998) [Pubmed]
WikiGenes - Universities