The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of a split respiratory pathway in the wheat "take-all" fungus, Gaeumannomyces graminis var. tritici.

This article describes the first detailed analysis of mitochondrial electron transfer and oxidative phosphorylation in the pathogenic filamentous fungus, Gaeumannomyces graminis var. tritici. While oxygen consumption was cyanide insensitive, inhibition occurred following treatment with complex III inhibitors and the alternative oxidase inhibitor, salicylhydroxamic acid (SHAM). Similarly, maintenance of a Deltapsi across the mitochondrial inner membrane was unaffected by cyanide but sensitive to antimycin A and SHAM when succinate was added as the respiratory substrate. As a result, ATP synthesis through complex V was demonstrated to be sensitive to these two inhibitors but not to cyanide. Analysis of the cytochrome content of mitochondria indicated the presence of those cytochromes normally associated with electron transport in eukaryotic mitochondria together with a third, b-type heme, exhibiting a dithionite-reduced absorbance maxima at 560 nm and not associated with complex III. Antibodies raised to plant alternative oxidase detected the presence of both the monomeric and dimeric forms of this oxidase. Overall this study demonstrates that a novel respiratory chain utilizing the terminal oxidases, cytochrome c oxidase and alternative oxidase, are present and constitutively active in electron transfer in G. graminis tritici. These results are discussed in relation to current understanding of fungal electron transfer and to the possible contribution of alternative redox centers in ATP synthesis.[1]


  1. Characterization of a split respiratory pathway in the wheat "take-all" fungus, Gaeumannomyces graminis var. tritici. Joseph-Horne, T., Wood, P.M., Wood, C.K., Moore, A.L., Headrick, J., Hollomon, D. J. Biol. Chem. (1998) [Pubmed]
WikiGenes - Universities