The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite.

As peroxynitrite is implicated as an oxidant for low-density lipoprotein (LDL) in atherogenesis, we investigated this process using reagent peroxynitrite (ONOO-) and 3-morpholinosydnonimine (SIN-1, which produces peroxynitrite via generation of NO. and O2.-). LDL oxidation was assessed by the consumption of ubiquinol-10 (CoQ10H2) and alpha-tocopherol (alpha-TOH), the accumulation of cholesteryl ester hydro(pero)xides, the loss of lysine (Lys) and tryptophan (Trp) residues, and the change in relative electrophoretic mobility. Exposure to ONOO- or SIN-1 resulted in rapid (<1 min) and time-dependent oxidation, respectively, of LDL's lipids and protein. Manipulating the alpha-TOH content by in vivo or in vitro means showed that when ONOO- or SIN-1 was used at oxidant-to-LDL ratios of <100:1 the extent of LDL lipid peroxidation increased with increasing initial alpha-TOH content. In contrast, in vivo enrichment with the co-antioxidant CoQ10H2 decreased LDL lipid peroxidation induced by SIN-1. At oxidant-to-LDL ratios of >200:1, alpha-TOH enrichment decreased LDL lipid peroxidation for both SIN-1 and ONOO-. In contrast to lipid peroxidation, altering the alpha-TOH content of LDL did not affect Trp or Lys loss, independent of the amounts of either oxidant added. Aqueous antioxidants inhibited ONOO--induced lipid and protein oxidation with the order of efficacy: 3-hydroxyanthranilate (3-HAA) > urate > ascorbate. With SIN-1, these antioxidants inhibited Trp consumption, while only the co-antioxidants ascorbate and 3-HAA prevented alpha-TOH consumption and lipid peroxidation. Exposure of human plasma to SIN-1 resulted in the loss of ascorbate followed by loss of CoQ10H2 and bilirubin. Lipid peroxidation was inhibited during this period, though proceeded as a radical-chain process after depletion of these antioxidants and in the presence of alpha-TOH and urate. Bicarbonate at physiological concentrations decreased ONOO--induced lipid and protein oxidation, whereas it enhanced SIN-1-induced lipid peroxidation, Trp consumption, and alpha-tocopheroxyl radical formation in LDL. These results indicate an important role for tocopherol-mediated peroxidation and co-antioxidation in peroxynitrite-induced lipoprotein lipid peroxidation, especially when peroxynitrite is formed time-dependently by SIN-1. The studies also highlight differences between ONOO-- and SIN-1-induced LDL oxidation with regards to the effects of bicarbonate, ascorbate, and urate.[1]

References

 
WikiGenes - Universities