The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Levamisole inhibits intestinal Cl- secretion via basolateral K+ channel blockade.

BACKGROUND & AIMS: Phenylimidazothiazoles have recently been shown to activate wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels in transfected cells and were proposed as therapy for cystic fibrosis. The aim of this study was to investigate the effects of phenylimidazothiazoles on regulated transepithelial Cl- transport in intact epithelia. METHODS: T84 intestinal epithelial cells grown on permeable supports and stripped human colonic mucosal sheets were studied by conventional current-voltage clamping. Selective permeabilization of apical or basolateral membranes with the monovalent ionophore nystatin was used to isolate basolateral K+ and apical Cl- channel activity, respectively. 86Rb+ uptake was assessed for Na/K/2Cl cotransporter and Na+,K(+)-adenosine triphosphatase activity. RESULTS: In T84 monolayers and human colon, levamisole and its brominated derivative bromotetramisole failed to activate transepithelial secretion. In fact, these compounds dose-dependently inhibited secretory responses to the cyclic adenosine monophosphate agonist forskolin and the Ca2+ agonist carbachol. In permeabilized T84 monolayers, phenylimidazothiazoles weakly activated apical Cl- currents (consistent with their reported action on CFTR) and did not affect bumetanide-sensitive or bumetanide-insensitive 86+Rb+ uptake. Instead, they profoundly inhibited the basolateral Ba(2+)-sensitive and Ba(2+)-insensitive K+ currents. CONCLUSIONS: Phenylimidazothiazoles block K+ channels required for Cl(-)-secretory responses elicited by diverse pathways in model epithelia and native colon, an effect that outweighs their ability to activate apical Cl- channels.[1]

References

  1. Levamisole inhibits intestinal Cl- secretion via basolateral K+ channel blockade. Mun, E.C., Mayol, J.M., Riegler, M., O'Brien, T.C., Farokhzad, O.C., Song, J.C., Pothoulakis, C., Hrnjez, B.J., Matthews, J.B. Gastroenterology (1998) [Pubmed]
 
WikiGenes - Universities