The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1, 1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5, 6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE (3.3 microM), 1,1-DCE (1.25 microM), and chloroform (6.3 microM) at initial rates of 3.1, 3.6, and 1.6 nmol/(min x mg of protein), respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization (2.6, 1.5, and 2.3 Cl- atoms per molecule of TCE, 1,1-DCE, and chloroform, respectively). Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.[1]

References

 
WikiGenes - Universities