The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL1143     2,4-dichlorophenol

Synonyms: LS-66, PubChem22008, CCRIS 657, SureCN77936, NSC-2879, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C02625

 

High impact information on C02625

  • One of these activities is similar to that of horseradish peroxidase and lactoperoxidase; it is dependent on Mn2+ ions and catalytic amounts of phenols, such as 2,4-dichlorophenol and N-acetyltyrosinamide, and is greater than 95% inhibited by 0.1 mM cyanide [6].
  • An accumulation of chlorophenol was found to inhibit chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhanced the toxic effect of 2,4-DCP on C. necator cells [7].
  • TfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol (2,4-DCP) and 4-chloro-2-methylphenol (MCP), respectively [7].
  • In this study we determined that the presence of R. eutropha (pJP4) within the developing earthworm cocoon can influence the degradation and toxicity of 2,4-D and 2,4-DCP, respectively [1].
  • lux-marked biosensors for assessing the toxicity and bioremediation potential of polluted environments may complement traditional chemical techniques. luxCDABE genes were introduced into the chromosome of the 2,4-dichlorophenol (2,4-DCP)-mineralizing bacterium, Burkholderia sp. RASC c2, by biparental mating using the Tn4431 system [5].
 

Chemical compound and disease context of C02625

 

Biological context of C02625

 

Anatomical context of C02625

  • Only the highest tested concentration of 2,4-DCP (180 mg kg(-1)BW, 1/2 LD(50)) induced a significant percentage of chromosome aberrations and sperm head abnormalities after i.p. injection [16].
  • When other analytes were tested the protoplasts gave a similar response to tin as for TBT, but detected copper and 2,4-dichlorophenol with similar signal profiles to Cd and with lower sensitivity [17].
  • 4. The degradation kinetics of 2,4-DCP on Nafion-Fe membranes was more favorable than the one observed during Fenton photo-assisted processes at pH 2 [18].
  • Administration of 2,4-DCP significantly decreased cytochrome P-450 and NADPH-cytochrome c reductase activity in hepatic microsomes isolated from guinea-pigs with the low AA intake [19].
  • A peroxidative activity was found in solubilized thylakoid membranes of olives (Olea europaea) cv. hojiblanca that catalyses degradation of chloroplast pigments in the presence of H2O2 and 2,4-dichlorophenol (DCP) [20].
 

Associations of C02625 with other chemical compounds

 

Gene context of C02625

 

Analytical, diagnostic and therapeutic context of C02625

References

  1. Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Daane, L.L., Häggblom, M.M. Appl. Environ. Microbiol. (1999) [Pubmed]
  2. Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Struijs, J., Rogers, J.E. Appl. Environ. Microbiol. (1989) [Pubmed]
  3. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). Perkins, E.J., Lurquin, P.F. J. Bacteriol. (1988) [Pubmed]
  4. Nucleotide sequence and functional analysis of the genes encoding 2,4,5-trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Danganan, C.E., Ye, R.W., Daubaras, D.L., Xun, L., Chakrabarty, A.M. Appl. Environ. Microbiol. (1994) [Pubmed]
  5. Development and characterization of a lux-modified 2,4-dichlorophenol-degrading Burkholderia sp. RASC. Shaw, L.J., Beaton, Y., Glover, L.A., Killham, K., Meharg, A.A. Environ. Microbiol. (1999) [Pubmed]
  6. The relationship between a novel NAD(P)H oxidase activity of ovoperoxidase and the CN- -resistant respiratory burst that follows fertilization of sea urchin eggs. Turner, E., Somers, C.E., Shapiro, B.M. J. Biol. Chem. (1985) [Pubmed]
  7. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Ledger, T., Pieper, D.H., González, B. Appl. Environ. Microbiol. (2006) [Pubmed]
  8. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. Moiseeva, O.V., Solyanikova, I.P., Kaschabek, S.R., Gröning, J., Thiel, M., Golovleva, L.A., Schlömann, M. J. Bacteriol. (2002) [Pubmed]
  9. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Yang, S., Wu, R.S., Kong, R.Y. Aquat. Toxicol. (2002) [Pubmed]
  10. Studies on composition and stability of a large membered bacterial consortium degrading phenol. Ambujom, S. Microbiol. Res. (2001) [Pubmed]
  11. Influence of phenoxyherbicides and their metabolites on the form of oxy- and deoxyhemoglobin of vertebrates. Bukowska, B., Reszka, E., Duda, W. Biochem. Mol. Biol. Int. (1998) [Pubmed]
  12. Chlorophenol degradation coupled to sulfate reduction. Häggblom, M.M., Young, L.Y. Appl. Environ. Microbiol. (1990) [Pubmed]
  13. Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. Kaphammer, B., Olsen, R.H. J. Bacteriol. (1990) [Pubmed]
  14. Activity of Desulfitobacterium sp. strain Viet1 demonstrates bioavailability of 2,4-dichlorophenol previously sequestered by the aquatic plant Lemna minor. Tront, J.M., Amos, B.K., Löffler, F.E., Saunders, F.M. Environ. Sci. Technol. (2006) [Pubmed]
  15. PCDD/F deposition time trend to Esthwaite Water, U.K., and its relevance to sources. Green, N.J., Jones, J.L., Jones, K.C. Environ. Sci. Technol. (2001) [Pubmed]
  16. Genotoxic effect of 2,4-dichlorophenoxy acetic acid and its metabolite 2,4-dichlorophenol in mouse. Amer, S.M., Aly, F.A. Mutat. Res. (2001) [Pubmed]
  17. Use of protoplasts from paired heterogenic bacterial species to detect tin contaminants: Prospects for biosensor development. Mountfort, D., Laczka, O., Debarnot, C., Bonnin, A., Pasco, N., Lloyd-Jones, G. Biosensors & bioelectronics (2007) [Pubmed]
  18. Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Sabhi, S., Kiwi, J. Water Res. (2001) [Pubmed]
  19. The influence of ascorbic acid on the hepatic cytochrome P-450, and glutathione in guinea-pigs exposed to 2,4-dichlorophenol. Nagyová, A., Ginter, E. Physiological research / Academia Scientiarum Bohemoslovaca. (1995) [Pubmed]
  20. Chlorophyll and carotenoid degradation mediated by thylakoid-associated peroxidative activity in olives (Olea europaea) cv. hojiblanca. Gandul-Rojas, B., Roca, M., Mínguez-Mosquera, M.I. J. Plant Physiol. (2004) [Pubmed]
  21. Isolation and characterization of a thermostable intracellular enzyme with peroxidase activity from Bacillus sphaericus. Apitz, A., van Pée, K.H. Arch. Microbiol. (2001) [Pubmed]
  22. Indirect fluorescence detection of phenolic compounds by capillary electrophoresis on a glass device. Arundell, M., Whalley, P.D., Manz, A. Fresenius' journal of analytical chemistry. (2000) [Pubmed]
  23. Biodegradation kinetics of 2,4-dichlorophenol by acclimated mixed cultures. Sahinkaya, E., Dilek, F.B. J. Biotechnol. (2007) [Pubmed]
  24. Cytochrome P450 3A4 mediated metabolism of 2,4-dichlorophenol. Mehmood, Z., Kelly, D.E., Kelly, S.L. Chemosphere (1997) [Pubmed]
  25. The effect of 2,4-dichlorophenol on growth and plasmidic beta-lactamase activity in Escherichia coli. Espigares, M., Mariscal, A. Journal of applied toxicology : JAT. (1989) [Pubmed]
  26. Supercritical carbon dioxide extraction of 2,4-dichlorophenol from food crop tissues. Thomson, C.A., Chesney, D.J. Anal. Chem. (1992) [Pubmed]
  27. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Haugland, R.A., Schlemm, D.J., Lyons, R.P., Sferra, P.R., Chakrabarty, A.M. Appl. Environ. Microbiol. (1990) [Pubmed]
  28. Effect of 2,4-dichlorophenol on DPPC/water liposomes studied by X-ray and freeze-fracture electron microscopy. Csiszár, A., Klumpp, E., Bóta, A., Szegedi, K. Chem. Phys. Lipids (2003) [Pubmed]
  29. Background and design of a Danish cohort study of workers in phenoxy herbicide manufacture. Lynge, E. Am. J. Ind. Med. (1987) [Pubmed]
 
WikiGenes - Universities