Upregulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration.
Cerebellar granule neurons isolated from postnatal day 7 (P7) rats and grown in normal K+ medium begin to degenerate at approximately 4 d in vitro (DIV) and die. To search for genes upregulated in the process of neuronal cell death, differential hybridization was performed with subtracted cDNA probes and a cDNA library from 5 DIV. One of the genes isolated was microglial response factor-1 (mrf-1), which encoded a sequence of 177 amino acids with a single EF-hand calcium-binding motif. By Northern blots, the transcript was upregulated in cerebellar culture at 4 DIV, peaked at 6 DIV, and decreased at 7 DIV. Upregulation was also found when the apoptosis of granule cells was induced by replacing high K+ medium with normal K+ medium. However, when non-neuronal cells were thoroughly eliminated with aphidicolin, an antimitotic agent, the upregulation at 4-7 DIV did not occur. By immunocytochemistry, MRF-1 was detected at 5 DIV in OX-42-positive cells (microglia), and it exhibited an increase in response to granule cell death. MRF-1 levels in microglia purified from cerebral cortex also upregulated in the presence of 5 DIV granule cells. In the developing cerebellum in vivo, levels of mrf-1 mRNA transiently increased in the early postnatal stages, reaching a peak at P7 when cerebellar neurons and astrocytes undergo extensive apoptosis. In adult brain sections, MRF-1 was detected in the perikarya and processes of ramified/resting microglia, and peripheral motor nerve dissection prominently increased the expression in activated microglia surrounding injured central motoneurons. Therefore, mrf-1 appears to be one of the microglial genes that respond to neuronal cell death and degeneration.[1]References
- Upregulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration. Tanaka, S., Suzuki, K., Watanabe, M., Matsuda, A., Tone, S., Koike, T. J. Neurosci. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg