The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium.

Microfluorometric measurements in Fura-2-loaded single cultured human vascular endothelial cells were used to characterize the intracellular calcium [Ca2+]i responses triggered by extracellular application of adenosine 5'-triphosphate (ATP) and other nucleotides. Application of ATP or uridine 5'-triphosphate (UTP) gave rise to dose-dependent elevations of [Ca2+]i in all the cells tested. At saturating concentrations of agonist, the [Ca2+]i response was biphasic, with an early peak and a sustained plateau. Unlike peak responses, the sustained Ca2+ plateau was sensitive to removal of Ca2+ from the external medium. Mn2+ quenching revealed the presence of Ca2+ influx during the agonist-induced calcium plateau. The agonist-evoked calcium plateau was inhibited in a dose-dependent manner by the Cl-channel blocker NPPB, by the divalent cation Ni2+ and by the imidazole antimycotic econazole. Previously, these compounds have been shown to block store-operated Ca2+ entry. The two phases of the agonist-evoked [Ca2+]i response were blocked by the specific phospholipase C inhibitor U-73122 and by intracellular injection of low molecular weight heparin, suggesting the involvement of IP3-sensitive intracellular Ca2+ stores. The pharmacological profile of the response, using different nucleotides and analogues, ATP = UTP > ADP = UDP, and no responses to P2X1 and P2Y1 agonists, suggested the involvement of P2Y2 receptors. The expression of mRNA for the P2Y2 receptor was detected by RT-PCR analysis. These results indicate that P2Y2 receptors linked to intracellular Ca2+ mobilization are present in human vascular endothelial cells. The initial [Ca2+]i mobilization is followed by a phase of elevated [Ca2+]i influx.[1]

References

  1. Calcium signalling through nucleotide receptor P2Y2 in cultured human vascular endothelium. Viana, F., de Smedt, H., Droogmans, G., Nilius, B. Cell Calcium (1998) [Pubmed]
 
WikiGenes - Universities