The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A new role for neurotrophins: involvement of brain-derived neurotrophic factor and neurotrophin-4 in hair cycle control.

Neurotrophins exert many biological effects not directly targeted at neurons, including modulation of keratinocyte proliferation and apoptosis in vitro. Here we exploit the cyclic growth and regression activity of the murine hair follicle to explore potential nonneuronal functions of neurotrophins in the skin, and analyze the follicular expression and hair growth-modulatory function of BDNF, NT-4, and their high-affinity receptor, TrkB. The cutaneous expression of BDNF and NT-4 mRNA was strikingly hair cycle dependent and peaked during the spontaneous, apoptosis-driven hair follicle regression (catagen). During catagen, BDNF mRNA and immunoreactivity, as well as NT-4-immunoreactivity, were expressed in the regressing hair follicle compartments, whereas TrkB mRNA and immunoreactivity were seen in dermal papilla fibroblasts, epithelial strand, and hair germ. BDNF or NT-4 knockout mice showed significant catagen retardation, whereas BDNF-overexpressing mice displayed acceleration of catagen and significant shortening of hair length. Finally, BDNF and NT-4 accelerated catagen development in murine skin organ culture. Together, our data suggest that BDNF and NT-4 play a previously unrecognized role in skin physiology as agents of hair growth control. Thus, TrkB agonists and antagonists deserve exploration as novel hair growth-modulatory drugs for the management of common hair growth disorders.[1]


  1. A new role for neurotrophins: involvement of brain-derived neurotrophic factor and neurotrophin-4 in hair cycle control. Botchkarev, V.A., Botchkareva, N.V., Welker, P., Metz, M., Lewin, G.R., Subramaniam, A., Bulfone-Paus, S., Hagen, E., Braun, A., Lommatzsch, M., Renz, H., Paus, A.R. FASEB J. (1999) [Pubmed]
WikiGenes - Universities