The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Ntf5  -  neurotrophin 5

Mus musculus

Synonyms: 2900040K06Rik, AI462899, NT-4, NT-5, NT4, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Ntf5

  • The neurotrophins acting on the developing placode-derived visceral nodose/petrosal (N/P) ganglion neurons are BDNF, NT3, and NT4 [1].
  • In this study, we used vaccinia virus infection and transfection methods to monitor the processing and sorting of neurotrophin-4 (NT-4) in AtT-20 cells, which have been used as a model for the sorting of secretory proteins in neurons [2].
  • Neurotrophins play a protective role during cerebral ischemia, and mice lacking both alleles for neurotrophin 4 (Nt4-/- ) or deficient in a single allele for brain-derived neurotrophic factor (Bdnf+/-) have increased susceptibility to cerebral ischemia [3].
  • Homozygous Bdnfnt4-ki/nt4-ki mice showed reduced body weight, infertility and skin lesions, suggesting unique biological activities of NT4 in vivo [4].
  • These results suggest that the NT-4 gene knock-in, probably involving increased intestinal IGLE innervation, altered short-term feeding, in particular by enhancing satiation and sensitivity to CCK, whereas long-term control of daily intake and body weight was unaffected [5].

Psychiatry related information on Ntf5


High impact information on Ntf5


Biological context of Ntf5


Anatomical context of Ntf5


Associations of Ntf5 with chemical compounds

  • In skin organ culture of C57BL/6 mice, BDNF, NT-3, and NT-4 all significantly increased 5-bromo-2'-deoxyuridine incorporation into epidermal keratinocytes [21].
  • This suggests that the NT-4 and BDNF-induced metabolic rate changes are associated with autophosphorylation of the tyrosine protein kinase residues [22].
  • METHODS: Retinal development in wild-type, NT-4/5 knockout (KO), and NT-4/5:BDNF double-KO mice was histologically examined from postnatal day 0 (P0) to P90 [23].
  • The NT-4/5-induced neuronal death was largely attenuated by addition of MK-801, indicating a critical role for NMDA receptors [24].
  • This fusion toxin has a deduced molecular mass of 60,163 and is formed by joining the first 389 amino acids of diptheria toxin to amino acids 1-130 of mature rat NT-4/5, using an NH2-terminal bridge of 33 additional amino acids including six consecutive histidines [25].

Physical interactions of Ntf5

  • We conclude that NT4 may exert trophic actions on all types of taste bud cells by binding to their TrkB receptors, and NT3 may also have a similar, though negligible role [26].

Regulatory relationships of Ntf5

  • Exposure of mature cortical cultures for 48 h to NT-4/5 induced neuronal death through TrkB activation [24].
  • Their inhibitors blocked NR2A induction and phosphorylation as well as neuronal death induced by NT-4/5 [24].

Other interactions of Ntf5


Analytical, diagnostic and therapeutic context of Ntf5


  1. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 complement and cooperate with each other sequentially during visceral neuron development. ElShamy, W.M., Ernfors, P. J. Neurosci. (1997) [Pubmed]
  2. Neurotrophin-4, alone or heterodimerized with brain-derived neurotrophic factor, is sorted to the constitutive secretory pathway. Hibbert, A.P., Morris, S.J., Seidah, N.G., Murphy, R.A. J. Biol. Chem. (2003) [Pubmed]
  3. Stroke damage in mice after knocking the neutrophin-4 gene into the brain-derived neurotrophic factor locus. Endres, M., Fan, G., Hirt, L., Jaenisch, R. J. Cereb. Blood Flow Metab. (2003) [Pubmed]
  4. Knocking the NT4 gene into the BDNF locus rescues BDNF deficient mice and reveals distinct NT4 and BDNF activities. Fan, G., Egles, C., Sun, Y., Minichiello, L., Renger, J.J., Klein, R., Liu, G., Jaenisch, R. Nat. Neurosci. (2000) [Pubmed]
  5. Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice. Chi, M.M., Fan, G., Fox, E.A. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2004) [Pubmed]
  6. Deficient long-term memory and long-lasting long-term potentiation in mice with a targeted deletion of neurotrophin-4 gene. Xie, C.W., Sayah, D., Chen, Q.S., Wei, W.Z., Smith, D., Liu, X. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Neurotrophin-4 is required for tolerance to morphine in the mouse. Smith, D.J., Leil, T.A., Liu, X. Neurosci. Lett. (2003) [Pubmed]
  8. High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake. Byerly, M.S., Fox, E.A. Neurosci. Lett. (2006) [Pubmed]
  9. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Klein, R., Smeyne, R.J., Wurst, W., Long, L.K., Auerbach, B.A., Joyner, A.L., Barbacid, M. Cell (1993) [Pubmed]
  10. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Conover, J.C., Erickson, J.T., Katz, D.M., Bianchi, L.M., Poueymirou, W.T., McClain, J., Pan, L., Helgren, M., Ip, N.Y., Boland, P. Nature (1995) [Pubmed]
  11. Sensory but not motor neuron deficits in mice lacking NT4 and BDNF. Liu, X., Ernfors, P., Wu, H., Jaenisch, R. Nature (1995) [Pubmed]
  12. Neurotrophin-3 prevents the death of adult central noradrenergic neurons in vivo. Arenas, E., Persson, H. Nature (1994) [Pubmed]
  13. Hyperinnervation of neuromuscular junctions caused by GDNF overexpression in muscle. Nguyen, Q.T., Parsadanian, A.S., Snider, W.D., Lichtman, J.W. Science (1998) [Pubmed]
  14. Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation. Gao, W.Q., Zheng, J.L., Karihaloo, M. J. Neurosci. (1995) [Pubmed]
  15. Neurotrophin-4: a survival factor for adult sensory neurons. Stucky, C.L., Shin, J.B., Lewin, G.R. Curr. Biol. (2002) [Pubmed]
  16. Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. Endres, M., Fan, G., Hirt, L., Fujii, M., Matsushita, K., Liu, X., Jaenisch, R., Moskowitz, M.A. J. Cereb. Blood Flow Metab. (2000) [Pubmed]
  17. Point mutation in trkB causes loss of NT4-dependent neurons without major effects on diverse BDNF responses. Minichiello, L., Casagranda, F., Tatche, R.S., Stucky, C.L., Postigo, A., Lewin, G.R., Davies, A.M., Klein, R. Neuron (1998) [Pubmed]
  18. A new role for neurotrophins: involvement of brain-derived neurotrophic factor and neurotrophin-4 in hair cycle control. Botchkarev, V.A., Botchkareva, N.V., Welker, P., Metz, M., Lewin, G.R., Subramaniam, A., Bulfone-Paus, S., Hagen, E., Braun, A., Lommatzsch, M., Renz, H., Paus, A.R. FASEB J. (1999) [Pubmed]
  19. Loss of brain-derived neurotrophic factor-dependent neural crest-derived sensory neurons in neurotrophin-4 mutant mice. Liebl, D.J., Klesse, L.J., Tessarollo, L., Wohlman, T., Parada, L.F. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  20. Neurotrophin 4 is required for the survival of a subclass of hair follicle receptors. Stucky, C.L., DeChiara, T., Lindsay, R.M., Yancopoulos, G.D., Koltzenburg, M. J. Neurosci. (1998) [Pubmed]
  21. Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4 act as "epitheliotrophins" in murine skin. Botchkarev, V.A., Metz, M., Botchkareva, N.V., Welker, P., Lommatzsch, M., Renz, H., Paus, R. Lab. Invest. (1999) [Pubmed]
  22. Interaction of NT-4 and BDNF with gp145trkb receptor: effect on cellular metabolism. Hopkins, M.A., Rosser, M.P., Fernandes, P.B., Bursuker, I. J. Neurosci. Methods (1997) [Pubmed]
  23. Role of neurotrophin-4/5 in neural cell death during retinal development and ischemic retinal injury in vivo. Harada, C., Harada, T., Quah, H.M., Namekata, K., Yoshida, K., Ohno, S., Tanaka, K., Parada, L.F. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  24. NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cell culture. Choi, S.Y., Hwang, J.J., Koh, J.Y. J. Neurochem. (2004) [Pubmed]
  25. Synthesis and cytotoxic profile of a diphtheria toxin-neurotrophin-4 chimera. Negro, A., Skaper, S.D. J. Neurochem. (1997) [Pubmed]
  26. Immunohistochemical detection of neurotrophin-3 and -4, and their receptors in mouse taste bud cells. Takeda, M., Suzuki, Y., Obara, N., Tsunekawa, H. Arch. Histol. Cytol. (2005) [Pubmed]
  27. Pro-inflammatory cytokines upregulate the skin immunoreactivity for NGF, NT-3, NT-4 and their receptor, p75NTR in vivo: a preliminary report. Bläsing, H., Hendrix, S., Paus, R. Arch. Dermatol. Res. (2005) [Pubmed]
  28. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. Seil, F.J., Drake-Baumann, R. J. Neurosci. (2000) [Pubmed]
  29. Attenuation of a caspase-3 dependent cell death in NT4- and p75-deficient embryonic sensory neurons. Agerman, K., Baudet, C., Fundin, B., Willson, C., Ernfors, P. Mol. Cell. Neurosci. (2000) [Pubmed]
  30. Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. English, A.W., Meador, W., Carrasco, D.I. Eur. J. Neurosci. (2005) [Pubmed]
  31. BDNF but not NT-4 is required for normal flexion reflex plasticity and function. Heppenstall, P.A., Lewin, G.R. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
WikiGenes - Universities