The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Methanosarcinaceae

  • Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli [1].
  • The R. rubrum CODH is 67% similar to the beta subunit of the Clostridium thermoaceticum CODH and 47% similar to the alpha subunit of the Methanothrix soehngenii CODH; an alignment of these three peptides shows relatively limited overall conservation [2].
  • In contrast with the carbon monoxide dehydrogenases from most other anaerobic bacteria, the purified enzyme of Methanothrix soehngenii was remarkably stable towards oxygen and it was only slightly inhibited by cyanide [3].

High impact information on Methanosarcinaceae


Biological context of Methanosarcinaceae


Associations of Methanosarcinaceae with chemical compounds


Gene context of Methanosarcinaceae

  • This protein immunoreacted with antiserum raised against purified Acs isolated from an unrelated species, Methanothrix soehngenii [14].
  • Due to their presumed importance in removing cold-stabilised secondary structures in mRNA, we have characterised a putative DEAD-box RNA helicase gene (deaD) from the Antarctic methanogen, Methanococcoides burtonii [7].
  • Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila [15].
  • The kinetic properties of the acetyl-CoA synthetase can explain the high affinity for acetate of Methanothrix soehngenii [10].
  • In the acetoclastic methanogen Methanothrix soehngenii, acetate is activated to acetyl coenzyme A by acetyl coenzyme A synthetase (Acs) [1].


  1. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. Eggen, R.I., Geerling, A.C., Boshoven, A.B., de Vos, W.M. J. Bacteriol. (1991) [Pubmed]
  2. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. Kerby, R.L., Hong, S.S., Ensign, S.A., Coppoc, L.J., Ludden, P.W., Roberts, G.P. J. Bacteriol. (1992) [Pubmed]
  3. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. Jetten, M.S., Stams, A.J., Zehnder, A.J. Eur. J. Biochem. (1989) [Pubmed]
  4. The direct genetic encoding of pyrrolysine. Krzycki, J.A. Curr. Opin. Microbiol. (2005) [Pubmed]
  5. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. Eggen, R.I., Geerling, A.C., Jetten, M.S., de Vos, W.M. J. Biol. Chem. (1991) [Pubmed]
  6. Primary structure of the chromosomal proteins MC1a, MC1b, and MC1c from the archaebacterium Methanothrix soehngenii. Chartier, F., Laine, B., Bélaïche, D., Sautière, P. J. Biol. Chem. (1989) [Pubmed]
  7. Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. Lim, J., Thomas, T., Cavicchioli, R. J. Mol. Biol. (2000) [Pubmed]
  8. Structures of minor ether lipids isolated from the aceticlastic methanogen, Methanothrix concilii GP6. Ferrante, G., Brisson, J.R., Patel, G.B., Ekiel, I., Sprott, G.D. J. Lipid Res. (1989) [Pubmed]
  9. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin. Dhillon, A., Lever, M., Lloyd, K.G., Albert, D.B., Sogin, M.L., Teske, A. Appl. Environ. Microbiol. (2005) [Pubmed]
  10. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. Jetten, M.S., Stams, A.J., Zehnder, A.J. J. Bacteriol. (1989) [Pubmed]
  11. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Springer, E., Sachs, M.S., Woese, C.R., Boone, D.R. Int. J. Syst. Bacteriol. (1995) [Pubmed]
  12. Acetate and CO2 assimilation by Methanothrix concilii. Ekiel, I., Sprott, G.D., Patel, G.B. J. Bacteriol. (1985) [Pubmed]
  13. Bacteriological composition and structure of granular sludge adapted to different substrates. Grotenhuis, J.T., Smit, M., Plugge, C.M., Xu, Y.S., van Lammeren, A.A., Stams, A.J., Zehnder, A.J. Appl. Environ. Microbiol. (1991) [Pubmed]
  14. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. Kumari, S., Tishel, R., Eisenbach, M., Wolfe, A.J. J. Bacteriol. (1995) [Pubmed]
  15. Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila. Inatomi, K., Kamagata, Y., Nakamura, K. J. Bacteriol. (1993) [Pubmed]
WikiGenes - Universities