The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Muscle Fibers, Slow-Twitch

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Muscle Fibers, Slow-Twitch

 

Anatomical context of Muscle Fibers, Slow-Twitch

 

Associations of Muscle Fibers, Slow-Twitch with chemical compounds

  • The rate of SR Ca(2+) uptake was increased in slow-twitch muscle fibers (14.2 +/- 1.0 vs. 19.6 +/- 2. 5 nmol. min(-1). mg fiber protein(-1), P < 0.05) and not altered in fast-twitch fibers [8].
  • The accuracy of the method was assessed in rabbit muscles after the injection of two gadolinium chelates (Gd-DTPA and Gd-DOTA) with the aim of improving the in vivo characterization of fast-twitch and slow-twitch muscle fiber types [9].
  • Interactions between the two myosin heads were studied in skinned rabbit slow-twitch muscle fibers activated in the presence of vanadate (Vi), a phosphate analog [10].
  • The lactate change ratio (post-exercise/pre-exercise) correlated negatively to the percentage of slow-twitch muscle fibers (P less than 0.05) in the patients but not in the healthy controls [11].
 

Gene context of Muscle Fibers, Slow-Twitch

 

Analytical, diagnostic and therapeutic context of Muscle Fibers, Slow-Twitch

References

  1. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ: differential expression in fast and slow twitch muscle fibers is driven by distinct promoters. Lee, H.H., Choi, R.C., Ting, A.K., Siow, N.L., Jiang, J.X., Massoulié, J., Tsim, K.W. J. Biol. Chem. (2004) [Pubmed]
  2. Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Caccamo, A., Oddo, S., Sugarman, M.C., Akbari, Y., LaFerla, F.M. Neurobiol. Aging (2005) [Pubmed]
  3. Expression of nitric oxide synthase immunoreactivity in the human female intramural striated urethral sphincter. Ho, K.M., Borja, M.C., Persson, K., Brading, A.F., Andersson, K.E. J. Urol. (2003) [Pubmed]
  4. GLUT-3 expression in human skeletal muscle. Stuart, C.A., Wen, G., Peng, B.H., Popov, V.L., Hudnall, S.D., Campbell, G.A. Am. J. Physiol. Endocrinol. Metab. (2000) [Pubmed]
  5. Coexistence of two calsequestrin isoforms in rabbit slow-twitch skeletal muscle fibers. Biral, D., Volpe, P., Damiani, E., Margreth, A. FEBS Lett. (1992) [Pubmed]
  6. Androgen receptor regulates expression of skeletal muscle-specific proteins and muscle cell types. Altuwaijri, S., Lee, D.K., Chuang, K.H., Ting, H.J., Yang, Z., Xu, Q., Tsai, M.Y., Yeh, S., Hanchett, L.A., Chang, H.C., Chang, C. Endocrine (2004) [Pubmed]
  7. Cellular adaptations of the ventilatory muscles to a chronic increased respiratory load. Keens, T.G., Chen, V., Patel, P., O'Brien, P., Levison, H., Ianuzzo, C.D. Journal of applied physiology: respiratory, environmental and exercise physiology. (1978) [Pubmed]
  8. Effects of fatigue on sarcoplasmic reticulum and myofibrillar properties of rat single muscle fibers. Danieli-Betto, D., Germinario, E., Esposito, A., Biral, D., Betto, R. J. Appl. Physiol. (2000) [Pubmed]
  9. Rapid relaxation times measurements by MRI: an in vivo application to contrast agent modeling for muscle fiber types characterization. Dedieu, V., Fau, P., Otal, P., Renou, J.P., Emerit, V., Joffre, F., Vincensini, D. Magnetic resonance imaging. (2000) [Pubmed]
  10. Myosin head interactions in Ca2+-activated skinned rabbit skeletal muscle fibers. Wilson, G.J., Shull, S.E., Naber, N.I., Cooke, R. J. Biochem. (1997) [Pubmed]
  11. Histochemical and metabolic changes in lower leg muscles in exercise-induced pain. Wallensten, R., Karlsson, J. International journal of sports medicine. (1984) [Pubmed]
  12. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ in fast- and slow-twitch muscle fibers. Ting, A.K., Siow, N.L., Kong, L.W., Tsim, K.W. Chem. Biol. Interact. (2005) [Pubmed]
  13. Skeletal muscle sarcoplasmic reticulum phenotype in myotonic dystrophy. Damiani, E., Angelini, C., Pelosi, M., Sacchetto, R., Bortoloso, E., Margreth, A. Neuromuscul. Disord. (1996) [Pubmed]
  14. Fiber recruitment affects oxidative recovery measurements of human muscle in vivo. Crowther, G.J., Gronka, R.K. Medicine and science in sports and exercise. (2002) [Pubmed]
  15. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Noble, B.J., Borg, G.A., Jacobs, I., Ceci, R., Kaiser, P. Medicine and science in sports and exercise. (1983) [Pubmed]
  16. Heterogeneous expression of myosin light chain 1 in a human slow-twitch muscle fiber. Ishiura, S., Takagi, A., Nonaka, I., Sugita, H. J. Biochem. (1981) [Pubmed]
 
WikiGenes - Universities