The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Delftia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Delftia

  • No coherent pattern was derived on the possible origin of the sdp, rdp, and dcc pathway genes. rdpA(MH) was 99% identical to rdpA(MC1), an (R)-dichlorprop/alpha-ketoglutarate dioxygenase from Delftia acidovorans MC1, which is evidence for a recent gene exchange between Alpha- and Betaproteobacteria [1].
 

High impact information on Delftia

  • The porin Omp32 is the major outer membrane protein of the bacterium Delftia acidovorans [2].
  • Gene Cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans [3].
  • Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins [4].
  • Enantiomeric degradation of 2-(4-Sulfophenyl)Butyrate via 4-sulfocatechol in Delftia acidovorans SPB1 [5].
  • Delftia acidovorans MC1 is able to grow on chlorophenoxy herbicides such as 2,4-dichlorophenoxypropionic acid (2,4-DCPP) and 2,4-dichlorophenoxyacetic acid as sole sources of carbon and energy [6].
 

Chemical compound and disease context of Delftia

  • Two novel genes, rdpA and sdpA, encoding the enantiospecific alpha-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified [7].
  • A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a [8].
  • Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge [9].
  • Exposure of Delftia acidovorans MC1 to 2,4-dichlorophenoxypropionic acid and its metabolites 2,4-dichlorophenol and 3,5-dichlorocatechol during growth on pyruvate as a source of carbon and energy induced several proteins [10].
  • The enzyme activities in cell-free extracts of Delftia sp. TBKNP-05 exhibited the presence of DBP esterase, MBP esterase, PA-dioxygenase, and PCA 4,5-dioxygenase [11].
 

Gene context of Delftia

References

  1. Genetic analysis of phenoxyalkanoic acid degradation in Sphingomonas herbicidovorans MH. Müller, T.A., Byrde, S.M., Werlen, C., van der Meer, J.R., Kohler, H.P. Appl. Environ. Microbiol. (2004) [Pubmed]
  2. High resolution crystal structures and molecular dynamics studies reveal substrate binding in the porin Omp32. Zachariae, U., Klühspies, T., De, S., Engelhardt, H., Zeth, K. J. Biol. Chem. (2006) [Pubmed]
  3. Gene Cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Tehara, S.K., Keasling, J.D. Appl. Environ. Microbiol. (2003) [Pubmed]
  4. Electrostatic properties of the anion selective porin Omp32 from Delftia acidovorans and of the arginine cluster of bacterial porins. Zachariae, U., Koumanov, A., Engelhardt, H., Karshikoff, A. Protein Sci. (2002) [Pubmed]
  5. Enantiomeric degradation of 2-(4-Sulfophenyl)Butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Schulz, S., Dong, W., Groth, U., Cook, A.M. Appl. Environ. Microbiol. (2000) [Pubmed]
  6. Regulation of catabolic enzymes during long-term exposure of Delftia acidovorans MC1 to chlorophenoxy herbicides. Benndorf, D., Davidson, I., Babel, W. Microbiology (Reading, Engl.) (2004) [Pubmed]
  7. Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1. Schleinitz, K.M., Kleinsteuber, S., Vallaeys, T., Babel, W. Appl. Environ. Microbiol. (2004) [Pubmed]
  8. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Hoffmann, D., Kleinsteuber, S., Müller, R.H., Babel, W. Microbiology (Reading, Engl.) (2003) [Pubmed]
  9. Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Shigematsu, T., Yumihara, K., Ueda, Y., Numaguchi, M., Morimura, S., Kida, K. Int. J. Syst. Evol. Microbiol. (2003) [Pubmed]
  10. Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress. Benndorf, D., Babel, W. Microbiology (Reading, Engl.) (2002) [Pubmed]
  11. Degradation of plasticizer di-n-butylphthalate by Delftia sp. TBKNP-05. Patil, N.K., Kundapur, R., Shouche, Y.S., Karegoudar, T.B. Curr. Microbiol. (2006) [Pubmed]
  12. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. Plaggenborg, R., Steinbüchel, A., Priefert, H. FEMS Microbiol. Lett. (2001) [Pubmed]
 
WikiGenes - Universities